

Laser-Based Additive Nanomanufacturing: Rigid to Flexible Substrates

Presenter: Zabihollah Ahmadi

Advisor: Prof. Masoud Mahjouri-Samani

Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36832.

Outline

- Printed Electronics
- Applications of Printed Electronics
- Laser-Based Additive Nanomanufacturing (ANM)
- Examples of ANM-Printed Devices
- Conclusion
- References
- Acknowledgment

Printed Electronics

- Printed electronics:
 - A set of printing methods used to create electrical devices on different substrates.
- Main printed electronic techniques are:
 - Aerosol jet and inkjet printing, screen printing, gravure, offset lithography.

Aerosol jet printing

https://www.led-professional.com/

□ Aerosol jet and inkjet as a non-contact method have more design flexibility compared to other contact methods.

$Applications\ of\ Printed\ Electronics$

Flex circuits are printed on ultra-thin substrates, such as plastic, which impart them the foldable, rollable, and bendable characteristics without affecting the functionality.

https://www.semi.org/en/communities/flextech/what-are-flexible-electronics

Challenges of Inkjet and Aerosol Jet

- Solvents/additives are used in ink formulations: most inks are not pure liquids but have a very complex composition, containing multiple liquids with different material properties
 - As an example, for Ag ink: polyvindone+ethylene glycol+ AgNO₃
- Limited source of materials
- Additional post annealing step for removing additives/solvents
- Due to the liquid-nature of ink, it is not best option for paper-based printing
- Ink maintenance
 - Settle and need to shake

IMAPS 18th International Conference on DEVICE PACKAGING | March 7-10, 2022 | Fountain Hills, AZ USA Laser-Based Additive Nanomanufacturing (ANM)

Process Steps:

- Splitting pulsed excimer laser beam for sintering and ablation.
- Generating amorphous nanoparticles
- Delivery of nanoparticles
- Sintering of pure amorphous nanoparticles
- Scanning of stage

Key features of ANM system

- Generates dry and pure nanoparticles
- Compatible with rigid and flexible substrates
- Suitable for metals, semiconducting, insulator and metal oxides.
- Capable of patterning different shapes
- Non-contact process/ Room temperature and atmospheric pressure

Ablated Nanoparticles-ANM process

- Notes:
 - 248 nm excimer laser ablated the solid targets.
 - Nanoparticles generate during this interaction.

Scanning Electronic Microscopy (SEM) images of produced nanoparticles:

Ablated Nanoparticles- ANM process

Scanning Transmission Electron Microscopy (STEM)

The nanoparticle size is ~3 to 10 nm.

Comparison:

 Nanoparticles size in inkjet and aerosol jet printing ~ range of >10 nm, depending on the material.

Laser Sintering and Crystallization of Nanoparticles

- Nanoparticles guided via carrier gas through the nozzle to the surface of the substrate.
- 248 nm excimer laser sinters and crystallizes the nanoparticles on the substrates.

SEM images of sintered/crystallized nanoparticles:

Nanoparticles fused together during laser sintering/crystallization.

Cross-sectional SEM images showing the sintered ITO on SiO₂ substrate by the ANM process

Raman Spectroscopy Study of

- Effect of the laser beam energy on the crystallization of TiO₂ nanoparticles
 - In-situ generated nanoparticles
 - no peaks suggesting that the generated TiO₂ nanoparticles are primarily amorphous-TiO₂.
 - Using crystallization energy from 0.07 to 0.56 J cm⁻²,
 - Generated a-TiO₂ nanoparticles starts to sinter and crystallize (according to the appearance of new Raman peaks.
- The Raman lines at 447 cm⁻¹ and 612 cm⁻¹ are assigned to the Eg, A_{1g} modes of the rutile TiO₂ phase.
- Note:
 - Sintering and crystallization of anatase phase is possible by changing the carrier gas from Ar to O₂.

Morphological Evolution of Printed Ag Lines

- By increasing the sintering energy, the nanoparticles start to fuse together.
- The highest porosity was seen at the lower sintering energy (~0.03 J cm⁻²)
- The lowest porosity was achieved at the higher laser sintering energy (~0.11 J cm⁻²)

Thickness vs. ANM-parameters

- Increasing flow gas rate \rightarrow increasing deposition thicknesses.
- Increasing repetition rate increasing deposition thicknesses

With ANM technique, thickness is controllable.

Resistance vs. Number of Printed Paths

Conductivity of printed ANM Ag and ITO as a function of different parameters:

- The electrical resistivity has proportional relationship with number of printed paths.
- Increasing the repetition rate will result in increasing the line thickness and hence conductivity improvement.

Reliability Test on ANM-Printed Ag

$$\frac{\Delta R}{R_0} (\%) = \frac{R_s - R_0}{R_0} \times 100 \quad (1)$$

$$Strain (\%) = \frac{t_{substrate}}{2R_{hend}} \times 100 \quad (2)$$

 R_0 , R_s , $t_{substrate}$, R_{bend} are initial resistance, understress resistance, substrate thickness, and bending radius, respectively.

- The resistance increased more at higher bending strains (lower bending radius)
- According to the results:
 - tolerate a large strain with a slight increase in their electrical resistance.

Stretching Tests on ANM-Printed ITO

Hydraulic fatigue machine used for stretching tests

- ITO lines were printed onto the PET substrates
 (55 mm×5 mm×0.175 mm)
- Stretch from 0.18% to 0.9% displacement for 100 cycles
- Above 0.9% displacement, permanent substrate plastic deformation was observed, resulting in resistance overload

Applications

Additive Nanomanufacturing on Flexible and Rigid Substrate

 Printing on numerous substrates, including flexible substrates, paper, metals, glass, and ceramics.

Applications

- Conductive electronics circuit and pattern of Ag printed by ANM process on polyimide substrate.
- Mounted SMD IC and LEDs on the circuit.

Applications

- Flexible Ag passive near field communication (NFC) tag for LED's controlling
 - SMD LED, 2-3V
 - ATtiny 85 IC programed with Arduino
 - Silver paste

Temperature sensor

- The sample on hotplate
- Temperature measurement range
- from 30 °C to 80 °C with 10 °C temperature increment.

The percentage of resistance change at different temperatures

Conclusional Conference on DEVICE PACKAGING | March 7-10, 2022 | Fountain Hills, AZ USA ${ m Conclusion}$

- Inkjet and aerosol jet printing techniques have some disadvantages such as:
 - Solvents and additives used in ink
 - Limitation in materials selection
- We introduced a novel technique, Additive Nanomanufacturing (ANM) printing technique capable of:
 - Dry and solution-free printing (No additives or solvent)
 - Suitable for a wide range of materials including metals and metal-oxides
 - Compatible with variety range of rigid and flexible substrates
- Wide range of devices and applications can be printed by ANM-technique.

References

- Ahmadi, Zabihollah, et al. "Dry Printing and Additive Nanomanufacturing of Flexible Hybrid Electronics and Sensors." *Adv. Mater* (**2022**): 2102569.
- Ahmadi, Zabihollah, et al. "Additive Nanomanufacturing of Multifunctional Materials and Patterned Structures: A Novel Laser-Based Dry Printing Process." Advanced Materials Technologies 6.5 (2021): 2001260.
- Ahmadi, Zabihollah, et al. "Additive nanomanufacturing of functional materials and devices." Laser 3D Manufacturing VIII. Vol. 11677. International Society for Optics and Photonics, 2021.

Acknowledgment

- Thanks to my supervisor Dr. Mahjouri-Samani for his continuous guidance and support.
- U.S. National Science Foundation (NSF), grant No. 1923363.
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, AL 36849, USA.
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Alabama Micro/Nano Science and Technology Center (AMNSTC)

Thanks for the attention Zabihollah Ahmadi zza0017@auburn.edu