

Advanced Fanout Embedded Bridge Packaging Technology for Chiplets Integration

Dr. Lihong Cao
ASE (US) Inc.
Lihong.cao@aseus.com

Introduction

Semiconductor trend and Chiplets Integration

Advanced Fanout Embedded Bridge Packaging Technology

Introduction of TVs and process flow

Process Development and Discussion

Warpage control and reliability assessment

Summary

IMAPS 18th International Conference on DEVICE PACKAGING | March 7-10, 2022 | Fountain Hills, AZ USA **Key Semiconductor Growth Drivers**

IoT/IoE

HPC

Automation

Smart Everything

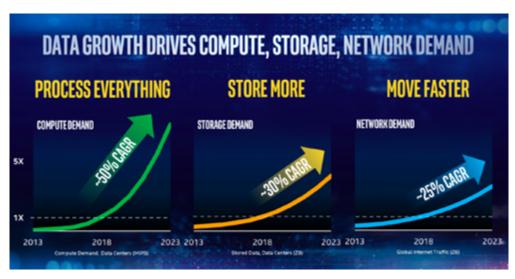

5G/Edge

AI/ML

- Mobile Phone/Tablet (\$131Bn)
- PC/Computing(\$101Bn)
- Server/storage/Comm. Infrastructure (\$152Bn)
- Automotive Electronics (\$47Bn)
- Consumer Electronics (\$41Bn)
- Industrial/Medical/Military/ Aerosapce (\$69Bn)

Server/Storage/Comm.Infra. 8.1.%

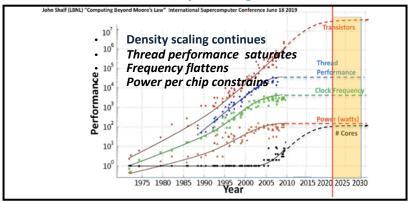
Source Prismark 2020 in IMAPS



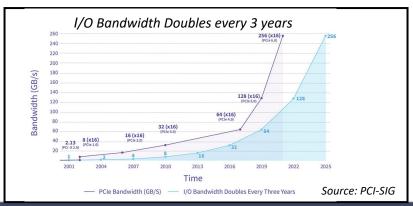
Data Growth Drives Demand for High Performance

- Worldwide data grow to 175 zettabytes by 2025 (IDC 2020)
- Global mobile data traffic increase to 77EB/M in 2022 exponentially (Statista 2020)
- Server, network, storage growths (+1000 exabyte/M)

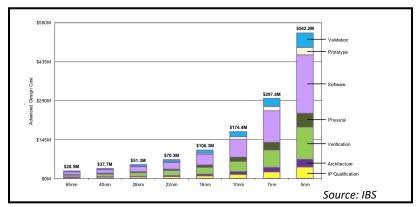
Source IDC 2020

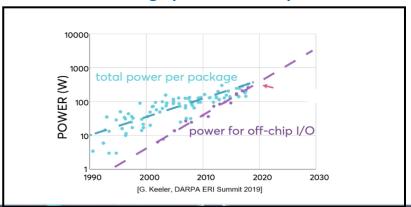


Source: Intel Investor Day 2019



Barriers: &: New Technology Innovation Drivers

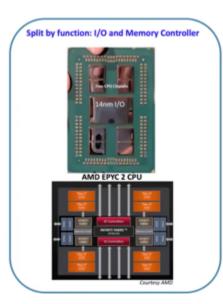

Driver 1- Density Scaling Increase


Driver 3- High performance requirement

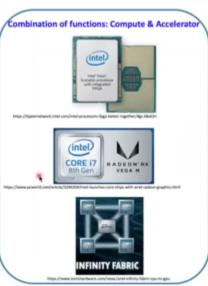
Driver 2- Si Node Dev Cost

Driver 4 – High power consumption

Chiplets and Heterogeneous Integration

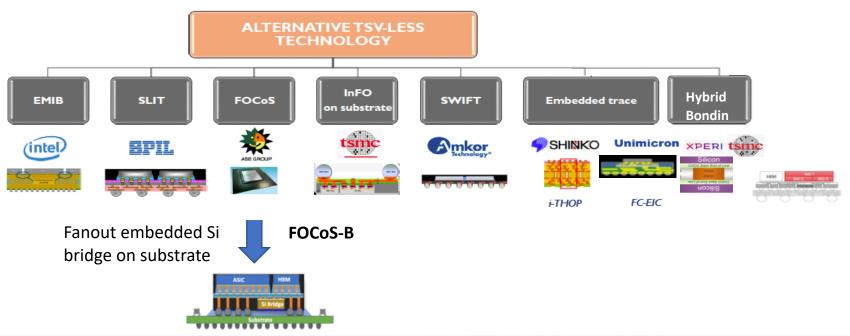

- New Logical partitioning and Disaggregated SoC
- Heterogeneous integration offers a solution for performance scaling following Moore's Law

Drivers & Benefits


- Mix & Match systems --Different Si Nodes
- Reuse IPs
- System flexibility

 --Processors, accelerator
- Performance optimization

 --Low latency, high bandwidth
- Time to Market
- Low Cost



Source: IBM ECTC 2020

Advanced HD Fanout Packaging Technology

- Alternative Si TSV-Less solutions to reduce cost
 - Embedded Si die to replace large Si interposer
 - Fanout RDL interposer with L/S > 1/1um
 - Better electrical performance (less insertion loss) due to no Si TSV

00724

Introduction

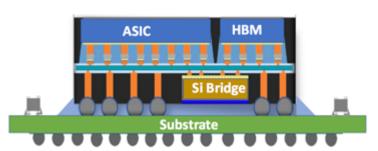
Semiconductor trend and Chiplets Integration

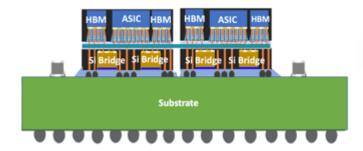
Advanced Fanout Embedded Bridge Packaging Technology

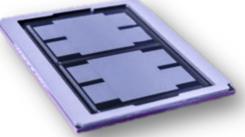
Introduction of TVs and process flow

Process Development and Discussion

Warpage control and reliability assessment


Summary


IMAPS 18th International Conference on DEVICE PACKAGING | March 7-10, 2022 | Fountain Hills, AZ USA **ASE FOCOS-B TV Structure**


> 2 Types of FOCoS-B TVs

- 1ASIC + 1HBM +1 Si Bridge die
- Module size: 27x14 mm²
- 1 RDL, L/S 10/10 um
- Si Bridge Die L/S 0.8/0.8um
- Package size: 40x30 mm²

00726

- 2ASIC + 4HBM +4 Si Bridge die
- Module size: 47x31 mm²
- 1 RDL, L/S 10/10 um
- Si Bridge Die L/S 0.8/0.8um
- Package size: 78x70 mm²
- Total 10 chiplets in MCM package

IMAPS 18th In ASECTION OSCEBCIPCTO RESS 202 OW Hills, AZ USA

Key Process steps

Bumping processes include Cu Pillar, Cu RDL and C4 bump

Assembly processes include CoW and CoS process **Molding & RDL** Cu Pillar & Bridge die **Carrier** b **Chip On Substrate** Carrier de-bond, C4, **ASIC & HBM Assembly/Molding Mold grinding & Dicing**

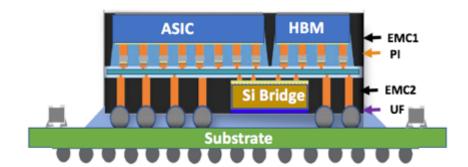
Introduction

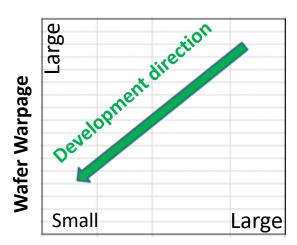
Semiconductor trend and Chiplets Integration

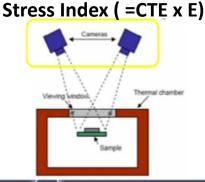
Advanced Fanout Embedded Bridge Packaging Technology

Introduction of TVs and process flow

Process Development and Discussion


- Warpage control and reliability assessment
- Summary

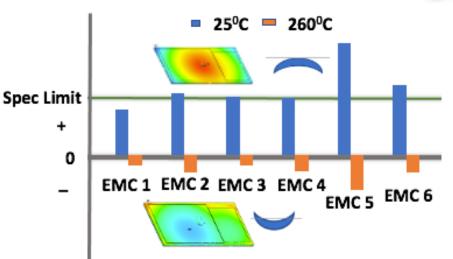



FOCoS-B'Material Selection and Warpage Control

- > FOCoS-B process materials impact on warpage
 - Various packaging materials (EMC, UF, PI, RDL etc.)
 - Key factors CTE, E, Stress Index play important roles
 - Stress Index is the key factor for warpage control

- Warpage measured by Advanced Metrology Analyzer (aMA) & Shadow Moiré
 - aMA non-contact three-dimensional digital image correlation

IMAPS 18th International Conference on DEVICE PACKAGING | March 7-10, 2022 | Fountain Hills, AZ USA FOCOS-B Molding Material Selection


00730

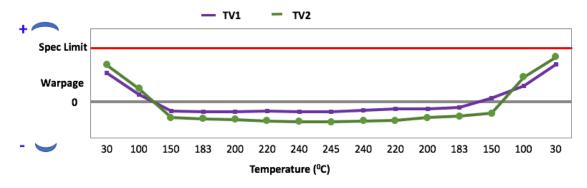
Mold compound material impact on warpage

- Experiments on warpage for different EMCs
 - EMC with moderated stress index yielded lower warpage (EMC1)
 - EMC with too low or too high CTE or E combinations not good for warpage control

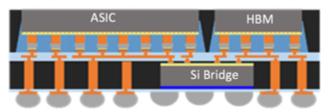
ASIC	НВМ	
SiE	Si Bridge	
0.0.0.0.	-0.0	

CPD	CTE (ppm/°C)	Modulus (GPa)	Stress index
Baseline	1.0X	1.0X	1.0X
EMC1	1X	1.3X	1.3X
EMC2	1.2X	2X	2.4X
EMC3	0.8X	0.8X	0.64X
EMC4	0.7X	1X	0.7X
EMC5	2X	0.4X	0.8X
EMC6	1X	1.5X	1.5X

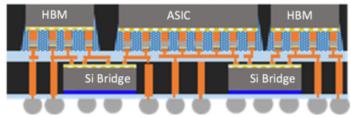
FOCoS-B Fanout module warpage vs different temperatures



FOCOS-B Warpage Control at Fanout Module

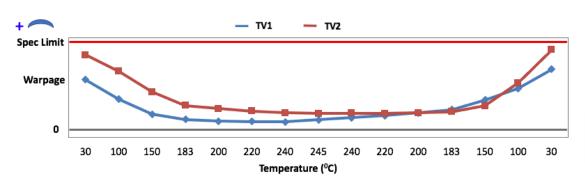

00731

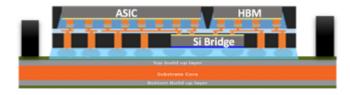
Warpage at fanout module level for TV1 & TV2


- Warpage at the fanout module level were similar for TV1 and TV2
- TV2 had slightly higher warpage than TV1
- Both TV1 and TV2 warpage were within the spec.

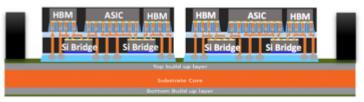
FOCoS-B TV1 fanout module

FOCoS-B TV2 fanout module




FOCOS-B Warpage Control at Package Level

- Warpage at package level for TV1 & TV2
 - TV2 showed larger warpage at package level than TV1 due to large package size (78x70mm²)


00732

■ Both TV1 and TV2 warpage were within the spec.

FOCoS-B TV1 package

Warpage of FOCoS-B TV1 and TV2 at package level vs different temperatures

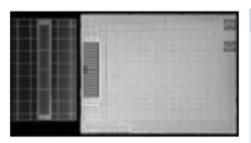
FOCoS-B TV2 package

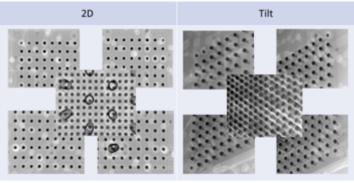
Reliability of FOCOS-BAGON Chiplets integration

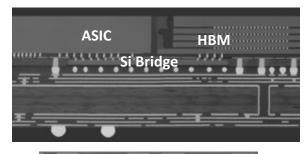
> Reliability Test

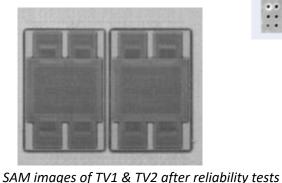
Both TV1 & TV2 had passed package level reliability tests

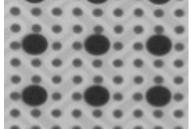
	FOCoS-B TV1	FOCoS-B TV2
Conditions		
MSL4	MSL4	MSL4
TCG (-40°C~125°C)	1200 cycles	1200 cycles
uHAST (130°C/85%RH)	264 <u>hrs</u>	264 <u>hrs</u>
HTST (150°C)	1000 hrs	1000 <u>hrs</u>
Test	O/S + FT+ SAT Pass	O/S + SAT Pass

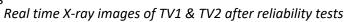


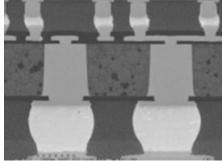



IMFOCOS-Brifor Chipiets Mintegration AZ USA


> Reliability validation


- No abnormalities were observed for TV1 and TV2 after reliability tests
- Good integrity of FOCoS-B for chiplets integration achieved successfully





X-section of FOCoS-B

- > Chiplets heterogeneous integration optimizes the system performance to continue scaling Moore's law with cost advantage
- > FOCoS embedded Si bridge technology for chiplets integration have been developed successfully
 - Enable high density and short reach connections between chiplets through Si bridge that has much finer L/S less than 1/1um for interconnection.
 - Successfully demonstrated FOCoS-B unique advantages including better scalability, high density interconnection; more design flexibility, good thermal stress control and better reliability performance
- ➤ Material selections play critical roles for heterogeneous integration
 - Compatibilities among various packaging materials (EMC, UF, PI etc..) with Si wafer and substrate
 - Design and material selections enhance yield and performance improvement

Thank You

www.aseglobal.com