FOWLP and Flip Chip Cost Comparison: Impact of the Supply Chain Crunch

Amy P. Lujan
amyl@savansys.com
SavanSys Solutions LLC
512-402-9943
www.savansys.com
Amy Lujan
VP of Business Development
SavanSys Solutions LLC

Prior to joining SavanSys, Amy held positions in business development at TOK America and in engineering at Nokia Japan. Amy has a degree in chemistry and spent one year on a Fulbright grant before beginning work at Nokia.
Agenda

➢ Introduction
➢ Process Flows
➢ Cost Comparisons
➢ Yield Comparison
➢ Summary
INTRODUCTION
The question of which packaging technology is the best choice will always exist

- Mature versus new technology can be particularly interesting

Some factors to consider when choosing a packaging technology

- Technical requirements
- Size requirements
- Supplier capabilities
- Cost

The right packaging choice is the one that meets design requirements at the lowest cost

- 5 years ago, a FOWLP versus flip chip cost comparison was already carried out – But pricing has changed since then
- Global pandemic → Supply chain issues → Mature technology price increases
Cost Components of each Activity

- The time required to complete the activity
- The amount of labor dedicated to the activity
- The cost of material required to perform that activity – both consumable and permanent material
- Any tooling cost
- The depreciation cost of the equipment required to perform the activity
- The yield loss associated with the activity
Cost vs. Price

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Cost</td>
<td>Measured Cost – May be done at the activity level or at the factory level</td>
</tr>
<tr>
<td>Indirect Cost</td>
<td>Factory cost that is not directly associated with an activity. Support, quality, manufacturing engineering, utilities, plant, etc.</td>
</tr>
<tr>
<td>Overhead</td>
<td>Company cost that needs to covered. Typically G&A, marketing, engineering, etc.</td>
</tr>
<tr>
<td>Profit Margin</td>
<td>Usually a percentage on total cost</td>
</tr>
<tr>
<td>Risk Factor</td>
<td>A higher than usual margin allocated to new technologies</td>
</tr>
</tbody>
</table>

Cost models are used to estimate this directly.

While all 4 of these vary widely, their total is driven to a level of consistency by the market. They are usually applied on top of direct cost as a % and per manufacturing object.
Typical Flip Chip Process Flow

1. BUMP WAFER
2. WAFER MOUNT & DICE
3. SUBSTRATE CREATION
4. DIE BOND
5. UNDERFILL
6. ATTACH LID / HEAT SPREADER
7. BGA BALL ATTACH & REFLOW
8. SINGULATE (if Strips)
9. INSPECTION / TEST
10. TO BURN IN TEST

Typical Wire Bond Process Flow

1. WAFER MOUNT & DICE
2. WIRE BOND
3. ATTACH LID / HEAT SPREADER
4. SUBSTRATE CREATION
5. ENCAPSULATION
6. BGA BALL ATTACH & REFLOW
7. SINGULATE (if Strips)
8. INSPECTION / TEST
9. TO BURN IN TEST

A lot of steps can occur here, depending on substrate complexity.
Typical Chip-first Face-down FOWLP

- SEMICONDUCTOR PROCESSING
- WAFER PROBE
- WAFER MOUNT & DICE
- PLACE DIE ON TAPE ON CARRIER
- BUILD RECONSTITUTED WAFER WITH MOLD
- REMOVE FROM CARRIER
- REDISTRIBUTION LAYER
- UNDERBUMP METALLIZATION
- BACKGRIND
- BALL ATTACH & REFLOW
- SINGULATION
- INSPECTION / TEST
- TO BURN IN TEST

Chip-first face-up and chip-last FOWLP are other variations on the process, not shown.
➢ Flip chip and wire bond have two discrete processes: substrate and assembly

➢ FOWLP is a process that essentially combines substrate and assembly processing into one

➢ Major cost drivers
 • Wire bond
 ▪ Package size
 ▪ Substrate structure
 ▪ Wire count & wire material
 • Flip chip
 ▪ Package size
 ▪ Substrate structure
 ▪ Cost of bumping the incoming wafer
 • FOWLP (chip-first face-down)
 ▪ Package size
 ▪ Number of imaging steps (number of RDLs)
COST COMPARISON
➢ Design details that impact cost
 • Package and die size
 • Layer count/substrate structure
 • I/O count, wire count and other wire details
 • Does the incoming die need to be bumped or not
 • Many others

➢ Isolate one variable at a time to test its impact on cost

➢ Costs included in the following charts
 • Direct costs of packaging
 • Costs to prepare the incoming wafer (add bumps, dice, etc.)
 • Overhead/indirect costs
 • Profit margin
 • 1 RDL (FOWLP), 2L substrate (FC and WB)
- FC and WB data labelled “standard” is based on average prices prior to 2020

- FC and WB data labelled “2021” is based on pandemic pricing, specifically around the first half of 2021

- No pricing is truly standard
 - Different volumes and customers can command very different pricing from the same supplier for a similar product
 - Pre-pandemic and pandemic prices here are as comparable as possible, in terms of comparing a similar volume/end customer in all cases
Changing Package Size: FC vs FOWLP

Changing Package Size for a 4x4mm Die

Package Cost ($)

Package size (mmxmm)

- Fan-out
- FC - Standard
- FC - 2021
FOWLP was cost-effective until only about a 6x6mm package prior to the pandemic.
FOWLP appears cost-effective until about an 8x8mm package with recent flip chip price increases.
Changing Package Size: WB vs FOWLP

Changing Package Size for a 4x4mm Die
Assume same design requires extra 1mm in WB

FOWLP Package size (mmxmm)

- Fan Out
- WB - Std Au
- WB - Std Cu
- WB - 2021 Cu
- WB - 2021 Au
Changing Package Size: WB vs FOWLP

A standard WB package with copper wire always appeared cost-effective compared to FOWLP in the past, but at the smallest package tested here, they are similar based on recent pricing.
A standard WB package with gold wire appeared cost-effective compared to FOWLP around the smallest package tested here, but FOWLP appears more cost-effective up to a 7x7mm package with recent price increases.
Changing Die Size: FC vs FOWLP

7mmx7mm Package - Varying Die Size

Package Cost ($) vs Die size (mmxmm)

- Fan-out
- FC - Standard
- FC - 2021
FOWLP was competitive at this package size for only a large die in the past, but may be competitive up to a 3x3mm die with recent FC price increases.
- Yield is an important component of cost

- FOWLP cost model considers defect density, not a set yield number (like assuming all packages, regardless of size, have a 99% yield)
 - Upcoming charts are labelled low, medium, and high yield, since we can’t label them with a specific yield number

- Following charts assume a $1 die is being packaged in all cases
Changing FOWLP Yield: FC vs FOWLP

FOWLP Yield Sensitivity

Package Cost ($)

5x5 6x6 7x7 8x8 9x9 10x10

Package size (mmxmm) for a 4x4mm die

- FC Standard
- FC 2021
- Best Yield
- Medium Yield
- Low Yield
Changing FOWLP Yield: FC vs FOWLP

Here is the original crossover point with standard FC and FOWLP at high yields.

Lower yields shift this by almost a full package size.
Lower yields shift this by a full package size.

Here is the original crossover point with recent FC pricing and FOWLP at high yields.
 ➢ FOWLP, FC, and WB packages have different cost drivers

 ➢ Selecting the right package for a design is already complex
 • Supply chain issues further complicate this decision

 ➢ Pricing changes driven by the pandemic make FOWLP appear cost-effective versus mature technologies in more scenarios than before

 ➢ Yield considerations can also shift the cost-effectiveness of FOWLP, regardless of whether we’re considering old or recent pricing