Advanced Packaging Capabilities at Intel

IMAPS Conference
March 2022
Executive summary

- Heterogeneous Integration (HI) is undeniably the vehicle to drive continued advances in Compute and Communications
- Advanced Packaging Architectures today provide unprecedented levels of Heterogeneous Integration in Client, Server and Discrete Graphics
- Intel committed to a vision of developing heterogeneously integrated leadership products using advanced packaging technologies to match the functionality of a monolithic SOC and more.....
- We continue to scale our Advanced Packaging Technologies Roadmap
- Federal Engagements in multiple programs (e.g. SHIP) allowing Intel to drive design and prototype diverse configurations for U.S. Government / and Defense Industrial Base; USG/DIB partnering critical for HI advancements
The U.S. Department of Defense has awarded Intel Federal LLC the second phase of its State-of-the-Art Heterogeneous Integration Prototype (SHIP) program. The SHIP program enables the U.S. government to access Intel’s state-of-the-art semiconductor packaging capabilities...

... the program will develop prototypes of multichip packages and accelerate advancement of interface standards, protocols and security for heterogeneous systems.
Creating Ecosystem of Tiles/Chiplets

- Implement custom & changing functionality
 - Interfaces & Evolving Standards
 - ADCS / DACs
 - Analog, RF
 - Fixed Function Digital (Processors / Accelerators)
 - Optical Interfaces

- FW/SW development support Chiplet integration for MCP’s
 - Interface support (AIB 1.0/2.0/AXI)
 - Enables novel Chiplet Integ. through std. interfaces
Continued leadership in advanced packaging

Embedded Multi-die Interconnect (EMIB)
- bump pitch ≤ 55 microns
- leads industry
- first 2.5D embedded bridge solution
- products shipping since 2017

Foveros Technology
- bump pitch 50-36 microns
- wafer-level packaging capabilities
- first-of-its-kind 3D stacking solution

Foveros Omni
- bump pitch ~25 microns
- next gen Foveros technology
- unbounded flexibility with performance 3D stacking technology for die-to-die interconnect and modular designs

Foveros Direct
- bump pitch <10 microns
- direct copper-to-copper bonding for low resistance interconnects
- blurs the boundary between where the wafer ends and the package begins
EMIB Embedded Multi-Die Interconnect Bridge

- Localized high-density wiring
- Multiple Bridges, Multiple Bridge Sizes and Bridge Technologies
- Bridge Mix and Match → Enhanced Design Flexibility
- Bridge silicon costs < Silicon interposer
 - No TSVs, Significantly less silicon area
- Die from Different Foundries
- Large Overall Die Area enabled
Packaging Innovations In The Near Future: Foveros Omni and Foveros Direct

- Rich Interconnect Portfolio allows greater mix-and-match and better/independent interconnect optimization for Power and IO

- Continued Pitch Scaling increases in IO/mm²
Intel Technology Development Capability

Pathfinding

- Modeling & Simulation
 - (Electrical, Mech, Performance, Yield, etc.)
- Demonstrate Proof of Concept
- Cost Modeling & Manufacturability

Development

- Achieve Reliability & Yield Targets on POR Process
- Validate Performance
- Support Product Engineering Samples
- Limited Volume Ramp

High Volume Manufacturing

- Transfer and Ramp in Factory Network
Board Assembly: Manufacturing Capability & Support

Component Room & High Temp warpage modeling and manufacturing risk assessment

SMT Process optimization for high-risk devices at Intel

Intel provides manufacturing recipe to customer/ODM

Direct on call factory startup support
Executive summary

- Heterogeneous Integration (HI) is undeniably the vehicle to drive continued advances in Compute and Communications.
- Advanced Packaging Architectures today provide unprecedented levels of Heterogeneous Integration in Client, Server and Discrete Graphics.
- Intel committed to a vision of developing heterogeneously integrated leadership products using advanced packaging technologies to match the functionality of a monolithic SOC and more.....
- We continue to scale our Advanced Packaging Technologies Roadmap.
- Federal Engagements in multiple programs (e.g. SHIP) allowing Intel to drive design and prototype diverse configurations for U.S. Government / and Defense Industrial Base; USG/DIB partnering critical for HI advancements.
Legal Notices

All product and service plans, and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel’s operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Code names are often used by Intel to identify products, technologies, or services that are in development and usage may change over time. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products and services described may contain defects or errors which may cause deviation from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Future node performance and other metrics, including power and density, are projections and are inherently uncertain and, in the case of other industry nodes, are derived from or estimated based on publicly available information. Intel’s node numbers do not represent the actual dimension of any physical feature on a transistor or structure. They also do not pinpoint a specific level of improvement in performance, power or area, and the magnitude of a decrease from one node number to the next is not necessarily proportionate to the level of improvement in one or more metrics. Historically, new Intel node numbers were based solely on improvements in area/density; now, node numbers generally reflect a holistic assessment of improvement across metrics and can be based on improvement in one or more of performance, power, area, or other important factors, or a combination, and will not necessarily be based on area/density improvement alone. Product and technology performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex and www.Intel.com/ProcessInnovation.

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and/or processes in development.