

Advanced Packaging Technology for High Density Silicon Photonics Transceiver Engines

Peter De Dobbelaere Cisco Systems, Inc. 03/08/2022

Overview

- Silicon Photonics Technology
- History & Outlook for Intra Datacenter Interconnect
- Requirements for Future Silicon Photonics Solutions
- 3D Silicon Photonics
- Summary

Silicon Photonics

The Promise

- Leverage IC industry design, manufacturing and test methods/infrastructure
- Advanced photonic device libraries (high efficiency, high BW)
- Seamless integration with electronics by mature 2.5 & 3D technology
- Power of integration (functionality & density)
- Enables highly automated assembly
- External modulation:
 - High fidelity modulation relative to directly modulated laser diodes (DML)
 - · Enables remote light sources (RLS)

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

The Challenges

- Coupling of light in/out of Si chip:
 - Grating couplers: Low loss, relatively easy to integrate, high density (2D), but limited optical wavelength bandwidth
 - Edge coupling: Low loss, more complicated to integrate, density limited (1D), broad optical wavelength bandwidth
- Light source integration:
 - · No native light source solution
 - · Multiple solutions developed: heterogeneous, FC,...
- · Low wafer volume compared to electronics:
 - · Need suitable business deal for foundries/fabs
 - · Mitigation: Enable multiple products from technology platform
- · Longer design cycles:
 - · Photonic and electronic IC design are concurrent
 - Mitigation: Enable multiple products from single mask set/technology node

Silicon Photonics Technology: Integrated Optics

• Silicon Photonics wafer foundry:

Currently Cisco/Luxtera uses TSMC as foundry for silicon photonic wafers for multiple transceiver products

Key process attributes:

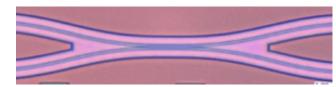
- Fine CD etch for various passive optical structures
- Ge epi for high BW photodetectors
- Implants for active devices
- 6 metal layer BOEL + TSV

• Advanced library of photonic devices:

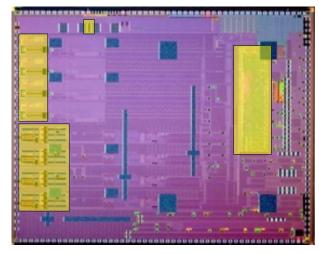
Carrier depletion/injection modulators, grating couplers, low loss waveguides, high responsivity & BW photodetectors, precision taps,...

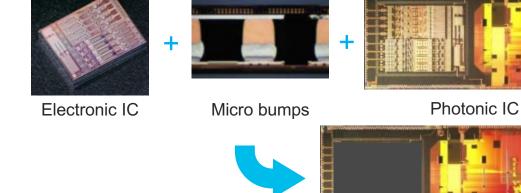
Process & Library maturity:


Qualified and in full production mode: in-line metrology in place, agreed upon E/O-WAT tests for silicon photonic wafers


Advanced Photonic PDK:

Device library, layout, DRC, LVS, behavioral models for full link corner simulation (process, T, voltage,...)

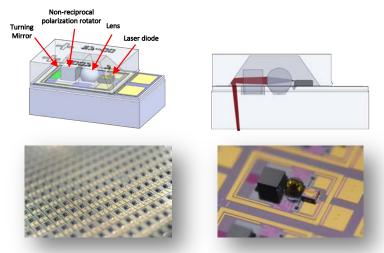




Integration Photonics & Electronics

Monolithic Photonic-Electronic IC (4x14 Gbps)

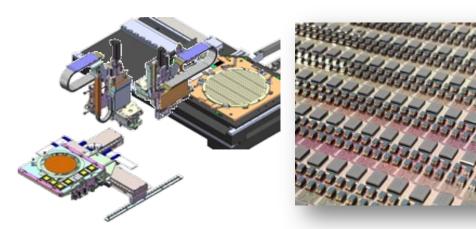
Hybrid Electronic + Photonic IC (4x25Gbps)

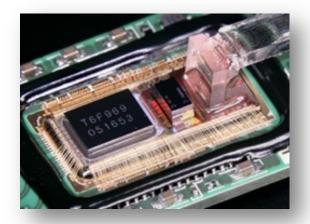

We commercialized both monolithic and hybrid integrated products, each approach has its merits and challenges:

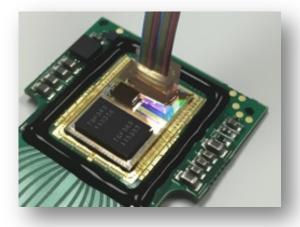
- Monolithic: Less assembly steps (+), low interconnect parasitics (+), development cost (-), non-standard E-PDK (-), product cost
- Hybrid: Platform development cost (+), business/supply chain considerations (+), interconnect parasitics (-)

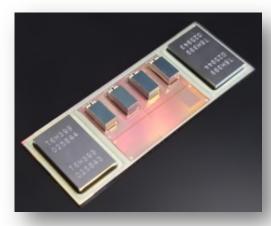
Light Source: Laser Micro-Package (LaMP)

Miniaturized hermetic package for laser diodes:


- · Use of conventional InP DFB laser diodes
- Integrated with coupling optics and optical isolation
- Suitable for coupling into silicon photonics die by surface coupling (grating coupler)
- · Wafer level assembly, test and burn-in


© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential


Alignment & Attachment Known Good LaMPs on CoW:


- · Fully automated wafer level process with mapping
- · Active alignment using features in the Si P chip
- Attach is by heat curing adhesive: local heating for adhesive curing by laser illumination from the back of the wafer

Silicon Photonics Chipsets (25 Gbaud NRZ)

100G (4x25Gb/s)

200G (8x25Gb/s)

400G (16x25Gb/s)

Photonic IC PIC25G / luxtsv:

- Modulators + controls
- Photodetectors (high-speed + monitor)

Electronic IC (N28):

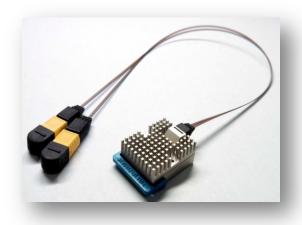
- Electrical interfaces (CTLE/CDR/..., 2-wire low speed)
- Modulator drivers/TIA
- MCU, ...

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

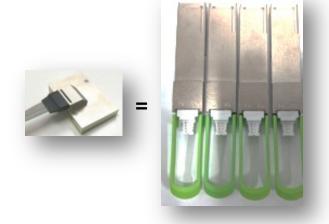
Light source:

- Laser MicroPackage (LaMP)
- · Wafer level assembly, test and burn-in
- · LaMP delivered to chipset line as KG device

Test strategy:


- KGD approach
- BIST & diagnostics built into photonic and electronic IC
- · Chipset delivered to module assembly line as a KG element

Silicon Photonics Modules (25 Gbaud NRZ)



- MSA compliant module
- · Multiple millions shipped
- Field proven high reliability
- Low profile fiber array for optical interface

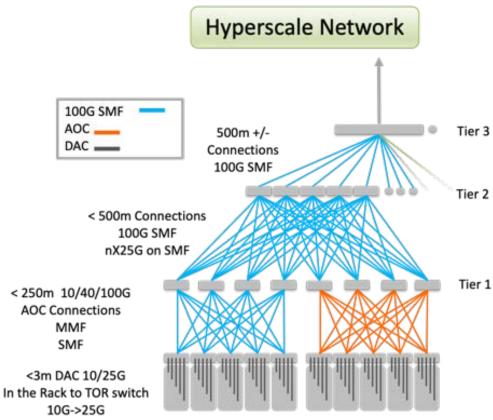
200G (8x25Gb/s) OBO Module

- Custom On-Board-Optics module
- Optical I/O PSM4 MSA compliant
- Single light source for eight 25 G channels
- Fiber array for optical interface

400G (16x25Gb/s) OBO Module

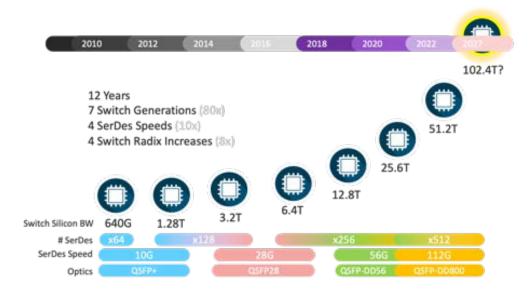
- Custom On-Board-Optics module
- Custom Optical I/O
- Fiber array for optical interface
- Reduced formfactor (~4.5x): same functionality as 4 QSFP28 modules

Overview


- Silicon Photonics Technology
- History & Outlook for Intra Datacenter Interconnect
- Requirements for Future Silicon Photonics Solutions
- 3D Silicon Photonics
- Summary

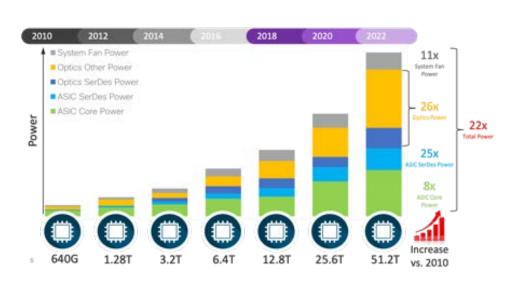
Hyperscale Datacenters

- > 100,000 Servers
- > 10,000 Switches
- > 1,000,000 Optical Interconnects


© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Need for low-cost single-mode fiber interconnect initiated first high-volume deployment of silicon photonics transceivers.

Trends in Ethernet Switching & Interconnect


Relentless increase in bandwidth

80x increase in BW over 12 years

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

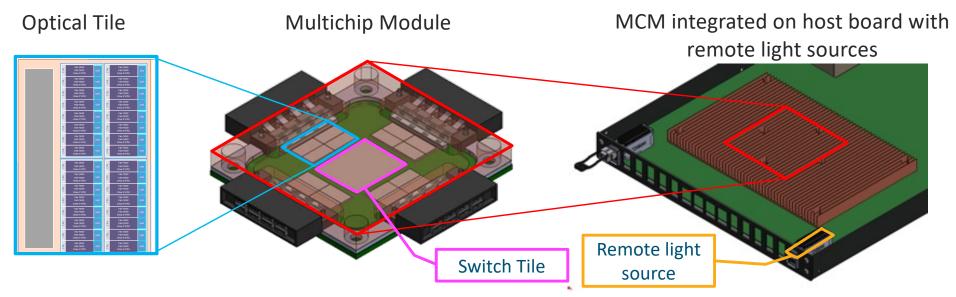
Growing power dissipation

22x increase in power over 12 years

Optical Transceiver Rates and Implementations

Evolution of data rates per lane IMDD (intensity modulation direct detect)

	100G/L	200G/L	400G/L
Final Standard [‡]	2017	≤ 2024	~ 2027
PMD Types	400G-DR4(+) 400G-FR4 400G-LR4	800G-DR4(+) 800G-FR4(+)	1600G-DR4(+) 1600G-FR4(+)
Modulation	53GBD-PAM4	112GBD-PAM4	224GBD-PAM4 (?) or 180GBD-PAM6 (?)
Analog BW (GHz)	40	85	170
Receiver Sensitivity (dBm) [†]	-4.6 dBm	≤ -3.6 dBm (?)	≤ -3.6 dBm (?)



- Coherent modulation becomes attractive for reaches > 10 km
- Front pluggable modules remain the most attractive transceiver form factor. Key purpose of near-packaged and co-packaged solutions is to reduce power dissipation.

[‡] First samples usually lead final standard by 1-2 years

[†] For 2km WDM4 solution, measured at module compliance point

Co-Packaged Optics for lower power dissipation

- Main purpose co-packaged optics: reduce power by moving optical transceivers closer to switch core
- Routing and Signal-Integrity challenges require higher density optical transceivers (more Gbps/mm2) on large high-performance substrates. 3.2T, 6.4T, 12.8T per photonic engine.
- Proximity of optics and switch ASIC results in significant heat sinking challenges prompting use of remote light sources.

Overview

- Silicon Photonics Technology
- History & Outlook for Intra Datacenter Interconnect
- Requirements for Future Silicon Photonics Solutions
- 3D Silicon Photonics
- Summary

Silicon Photonics Technology Requirements for Current and Future Transceiver Applications

Product Requirements

Increasing electrical and optical bit rate:

• Electrical: 28 G -> 56 G -> 112 G -> 224 G

• Optical: 25 G -> 100 G -> 200G -> 400G

Increasing integration level (cumulative data rate / chipset):

- Larger number of channels and optical I/Os
- Higher density: Gb/mm2
- Higher density of power dissipation: heat sink challenge

Increasing optical device performance requirements:

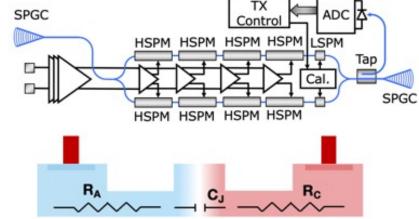
- Support higher link penalties
- More extensive use of WDM
- High-power, low-noise light source (internal/external)

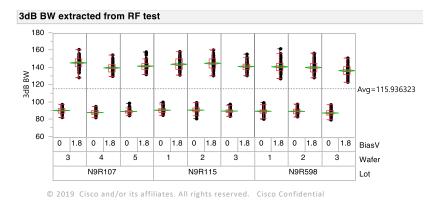
Manufacturing requirements:

- High-volume, low-cost manufacturing
- Time to market

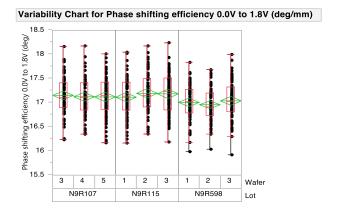
© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Technology Requirements


- High BW modulators & photo detectors (50GHz -> 100 GHz)
- Support advanced CMOS N7 -> N5 -> N3
- Lower parasitics (R, L, C): TSV/TDV, smaller bumps, bump-less
- Denser interconnect (smaller bumps, bump-less, dense TSV/TDV)
- Support larger P-die size (1x reticle sizes or more) & multiple Edie on P-die
- Improved thermal interfaces
- Support advanced CMOS N7 -> N5 -> N3
- Continue reducing insertion losses: grating & edge couplers, waveguides, passive devices
- Integrated/external mux/demux
- Efficient external light source
- Leverage mature approaches & technologies
- Automation
- Minimize complexity



Advanced Silicon Photonics Devices: High-Speed Phase Modulators

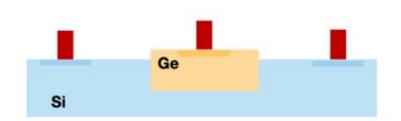

Phase modulator (key element of distributed MZI)

- PN junction carrier depletion, BW determined by dielectric relaxation time and access RC time constant.
- $V_{\pi}L_{\pi} < 1.9 \text{ V.cm (17 deg/mm at 1.8V)}$
- Insertion loss: ~0.7 dB/mm (passive)
- BW: ~ 116 GHz (RC time constant is dominant)

Advanced Silicon Photonics Devices: High-Speed Photodetector

Ge Waveguide Photodetector:

• Ge single-heterostructure photodetector reduces transit time compared to double-

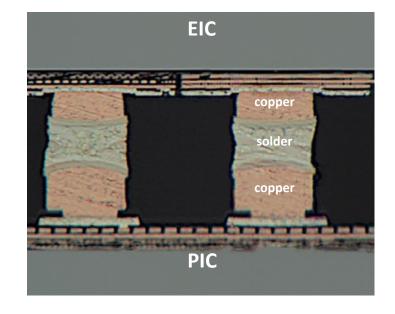

heterojunction designs

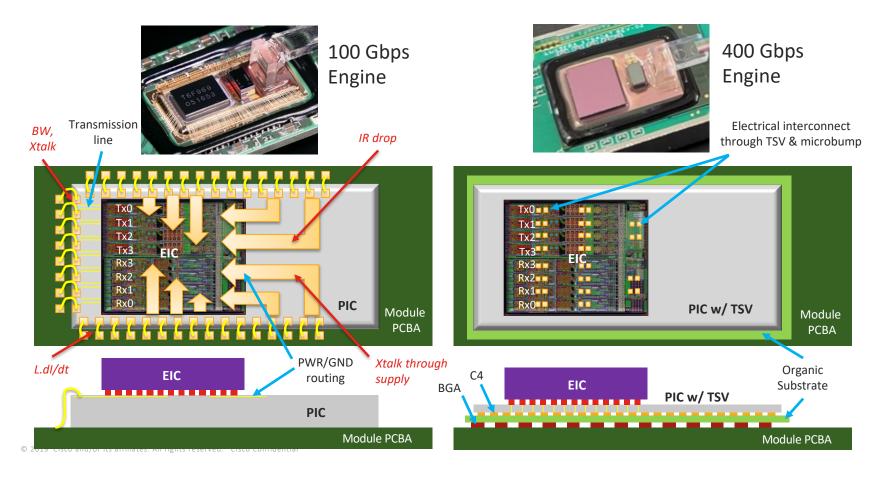

• Responsivity: 1 A/W

• BW: 65 GHz (2V bias)

• Idark: $< 1 \mu A$

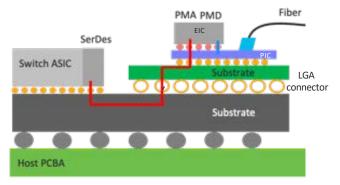
• Capacitance: < 5 fF



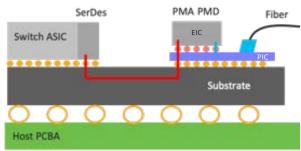

SHPD DOE data with 67GHz LCA

Importance of Packaging: Impact on RX sensitivity

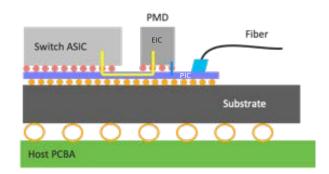
- Receiver sensitivity is determined by transimpedance gain/noise vs bandwidth tradeoff:
 - Strongly affected by parasitic capacitance at the input of the TIA
 - This tradeoff gets even more important at higher data rates
- Hybrid integration between EIC and PIC by means of microbumps (CuPi):
 - TIA input capacitance composed of: C_{PD}, C_{pad1}, C_{pad2}, input cap TIA
 - Cu Pi interconnect has ~2 x capacitance of the photodetector
- Mitigation paths:
 - Tuning out parasitics with inductors?
 - Reduce micro-bump/pad size, bump-less bonding?
 - Monolithic integration?



Importance of Packaging: Power Supply

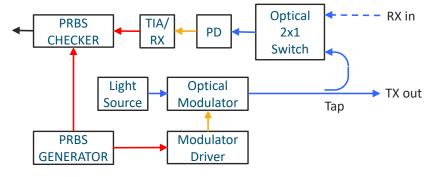


Options for 3D silicon Photonics Co-Packaged Optics


"Near Packaged" Optics by Optical Modules

Co-Packaged Optics by Electro-Optic MCM

Co-Packaged Optics by Silicon Photonic Interposer



- Optical module: multiple suppliers
- Complex system integration: connectors, size constraints
- Longer traces + connector, not lowest power solution
- Leveraging existing technologies
- Integration at OSAT
- Shorter traces on substrate no connector, should allow lower power
- Leveraging existing technologies
- Integration at OSAT
- Shortest traces on silicon interposer, should allow lowest power

Test and Remote Light Source for Co-Packaged Optics

Co-Packaged Optics Test Flow:

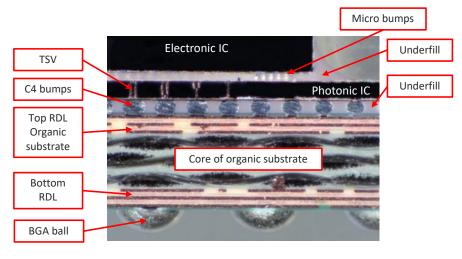
- A test flow with sufficient coverage must be developed from chip to module/system
- · Built-in self test for optical functionality
 - A must in high density transceivers (test time, cost,...)
 - Integrated optics allows for compact implementations of built-in self test

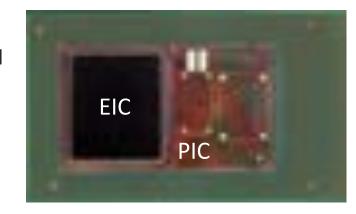
© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

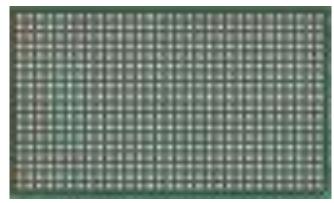
Remote Light Source for Co-Packaged Optics:

- Advantages:
 - Decoupling light source and transceiver allows the light source to operate efficiently and reliably while the transceiver operates at ~100 C
 - Field serviceability
- Standardization:
 - · Formfactors & specifications under discussion
 - · Bovington, et al. "External Laser Source

Small Form Factor Pluggable Module Project Start", OIF oif20-21.205.0, May 11, 2021

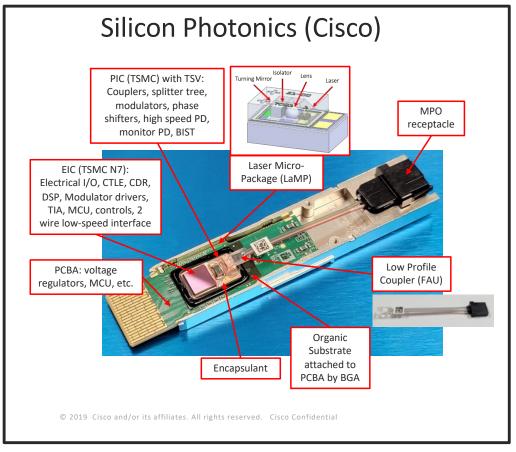


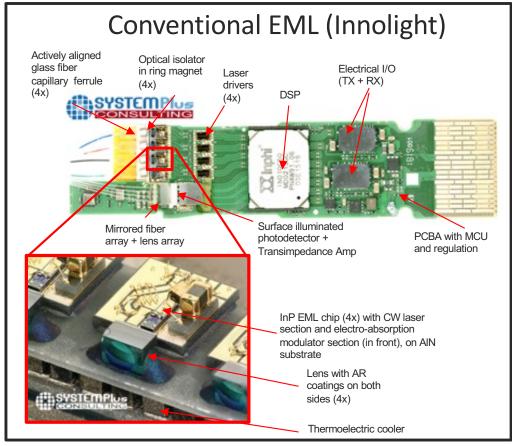

Overview

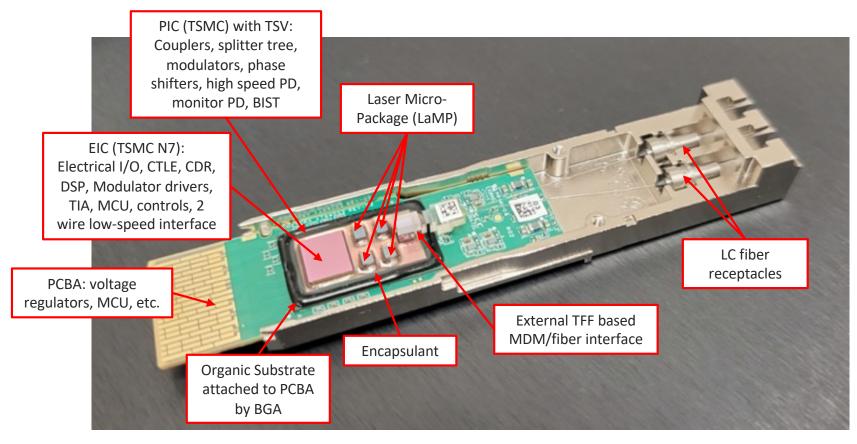

- Silicon Photonics Technology
- History & Outlook for Intra Datacenter Interconnect
- Requirements for Future Silicon Photonics Solutions
- 3D Silicon Photonics
- Summary

3D Silicon Photonics Technology Platform

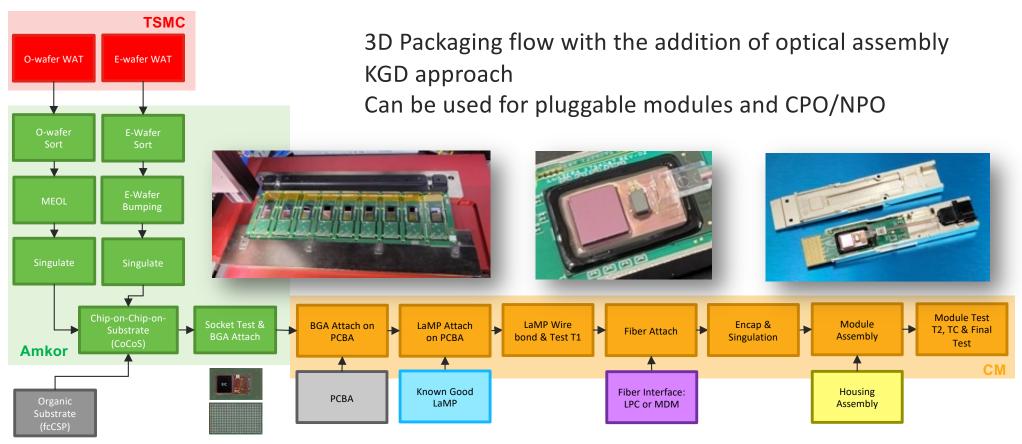
- CoCoS: Organic substrate with PIC and EIC
- PIC has Through Substrate Vias (TSV) allowing electrical interconnect through the PIC
- EIC bonded to PIC by micro bumps
- PIC bonded to organic substrate by C4 bumps






© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

400G-DR4 QSFPDD Module: 3D Silicon Photonics vs Conventional Transceiver Technology:



3D Silicon Photonics 400G-FR4 QSFP-DD Module

3D Silicon Photonics Manufacturing Flow

Summary

- Over the last decade Silicon Photonics has gained significant momentum in HV production of optical transceivers addressing Hyperscale DC, High-Performance computing, Mobile and Enterprise applications.
- As data rates per lane keep increasing: 25 G/l, 100 G/l, 200G/l, 400G/l, the technology needs to to be augmented by introducing more advanced optoelectronic devices and new packaging technologies.
- Silicon photonics in combination with 3D advanced packaging can support the data rate and density optical interconnect roadmaps demanded by the industry.

Acknowledgement

This presentation contains work of the entire Cisco/Luxtera team and its technology partners, their contributions are greatly acknowledged.

Thank you for your interest

