mercury

THE EVOLUTION OF MOORE'S LAW THROUGH CHIPLETIZED ARCHITECTURES

Tony Trinh - Sr. Director, Advanced Packaging Technologies Vic Medrano – Sr. Director, Chipscale Defense Mission Area Microsystems Business

© Mercury Systems, Inc. 001118

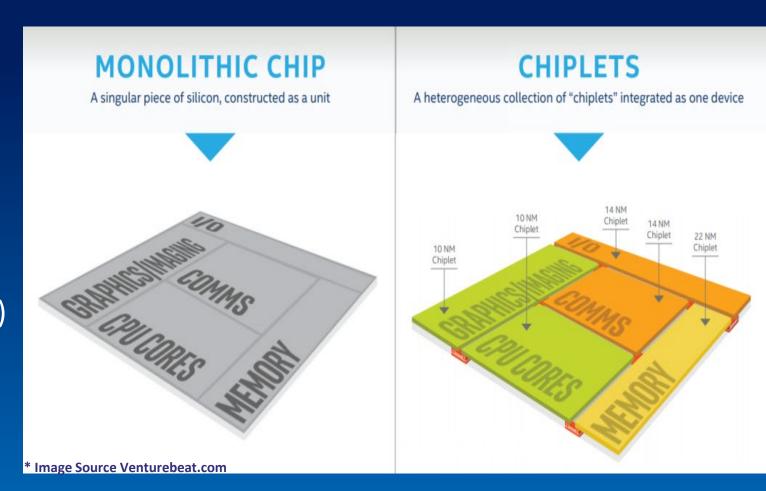
Moore's Law

We have left the transistor shrinking phase of Moore's Law

Moore's Law

Doubling the number of transistors per chip roughly every two years

Future of Moore's Law


- Increasingly difficult to maintain exponential improvements
 - ► R&D and capital investments
 - Cost of transistors (design, verification, test, and fabrication)
 - As transistor's shrink, performance trade-offs between analog and digital are increasing
- Chipletized architectures allow the focus on the right node for the specific capability

...and we have entered the <u>next phase</u> of Moore's Law through chipletized architectures

The future of Moore's Law looks promising with chipletized architectures

- Moore predicted chipletized architectures as the next phase on his last page
- High speed chip-to-chip communications (AIB & UCIe)
- Enables mixed foundries, process nodes, and IP sources
- Specialized System in Packages (SiP)
- Leading semiconductor companies are already moving to heterogeneous 2.5D solutions

Geopolitical and supply chain constraints are also impacting Moore's Law

- Globalization has migrated Advanced Packaging to the Pacific Rim for decades
- Current geopolitics is driving instability in the region and increasing the risk of access to leading edge microelectronics and packaging capabilities
- This has created substantial risks to western countries as they strategically modernize
- At the same time, Advanced Packaging is more critical in solutions as we transition to Heterogeneous Integrated (HI) architectures enabling processing to move to the sensor edge

A sustainable and assured microelectronics supply chain is critical modernization activities

Mercury Systems is focused on reshoring Advanced Packaging for critical microelectronics

Result: Chipletized architectures enables modernization programs across all domains

*HI = Heterogeneous Integration

Air

Electronic Warfare (EW)

Land

HI Impact: Enhanced search and track, EW, GPS, autonomy

Modernization: Cognitive EW

HI Impact: Direct to Digital RF, Lower latency, expanded bandwidth, Integrated chiplets for ADC/DAC, DSP, AI, Memory

C4ISR

HI Impact: Enhanced search and track, EW, GPS, 5G, autonomy

Radar Sensing and Tracking

Modernization: Multi-function radar, Anti-hypersonic tracking

HI Impact: Direct to Digital RF, Lower latency, multichannel, multi-function, photonics. Integrated chiplets for

ADC/DAC, DSP, AI, Memory

Sea

HI Impact: Enhanced search and track, EW, GPS, autonomy

Enabling Superiority in all **Domains**

DoD Modernization

Enhancing Capabilities

Modernization: Fully networked command, control, and comminutions, Advanced imaging, 5G, expanded tracking

HI Impact: Direct to Digital RF, Lower latency, multichannel, multi-function, photonics

Space

HI Impact: radiation tolerant computing, advanced sensor processing, data throughput

Weapons

Modernization: Hypersonics, anti-hypersonic weapons, autonomy, automatic target recognition, GPS denied, directed energy, HEL

HI Impact: Direct to digital RF, lower latency, multi-channel

multi-function sensors

Cyberspace

HI Impact: Integrated security, heterogeneous computing, AI, Quantum computing

- > Trusted, secure, and available advanced microsystems are critical in the modernization efforts
- > Advanced HI packaging solutions are a key enabler for modernization activities

Chiplet Technology –Bringing System Scale Down To Chip Scale

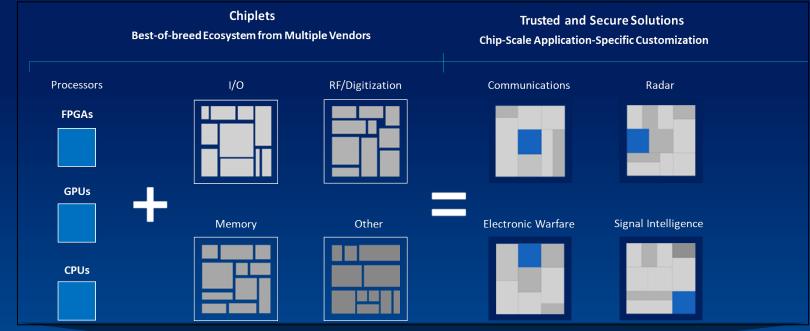
Mercury is uniquely positioned to lead the technology transfer from Silicon Valley to Aerospace and Defense because of our close collaboration with leading companies in the semiconductor industry.

We are a leading innovator in game-changing chiplet technology, expanding our trusted microelectronics capabilities to bring open systems architectures down to chip scale to push processing to the edge.

Traditional Monolithic Chip Delivery Cycle 36-48 months Delivery Requirements **New Accelerated Delivery Cycle** Chiplets enable multiple product updates in the same timeframe ✓ Trusted Manufacturing 12-18 months Trusted Supply Chain Made in USA Delivery Requirements **Additional Benefits** - 4: 8 BuiltSECURE™ Optimal Reliability & Advanced Ruggedized SWaP-C **Optimized** Performance Endurance Thermal Military Grade

Our capabilities

Chiplet Architectures Enable New Applications at a Rapid Pace

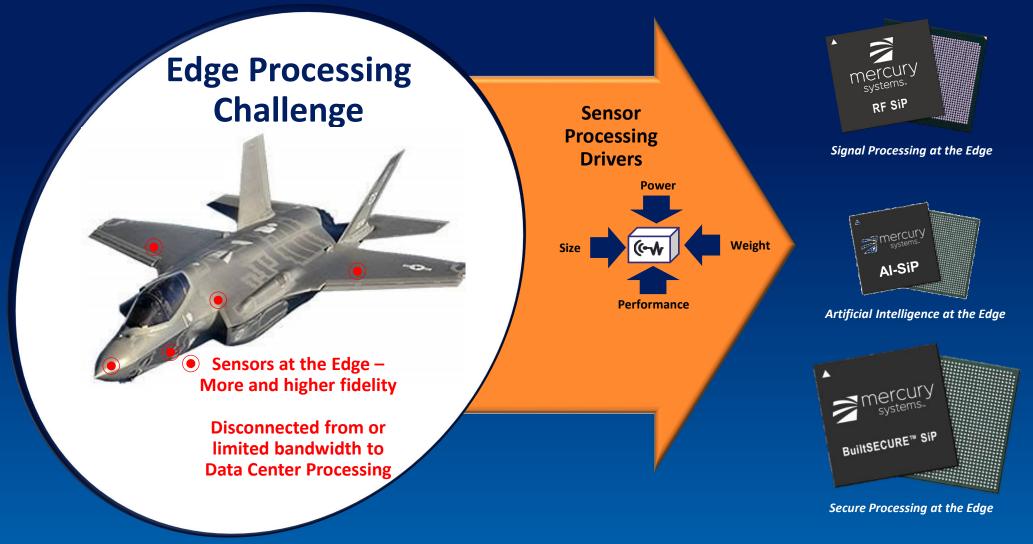

Enabling customized and trusted leading-edge microelectronics for our defense customers at the speed of commercial innovation

Defense Microelectronics is trending with:

- High frequency analog processing moving to digital semiconductor technologies
- Much higher signal processing & compute density
- Reduction in overall power required
- Trusted manufacturing increasing in importance
- Heterogeneous solutions with many high-value chiplet/die partners
- Reduced time to system fielding
- Less overall program spend

Mercury Microsystems is driving thought leadership in defense:

- Innovating 2.5/3D capabilities with compelling advantage over traditional methods
- Maturing strong relationships with semiconductor partners
- Increasing the value chain for fully integrated sensor edge processing solutions
- Open Systems Architecture (OSA) at chip-scale enabling modularity and flexibility.
- Future: Mercury designed chips and chiplets



Secure Processing at the Sensor Edge

Artificial Intelligence at the Sensor Edge

Mercury's 2.5D System in Packages

Enables Processing at the Sensor's Edge to Turn Data Into Information

Mercury Vision: Chiplet Based Store Front

Standard Parts Derivative Parts Fully Custom Parts

Mercury Store Front

- ITAR
- DFAR contracts
- Trusted design and processes
- Classified design and/or processes
- Security
- Unique IP
- Unique processes
- Merchant supplier focused on DoD
- Merchant semiconductor partnerships
- Access to leading edge silicon
- Low-volume/high-mix production
- Rugged environments
- Integrated solutions (CCA & subsystem level)

Heterogeneous Chip/Chiplets Access/Library Security IP
Mercury
Third Party
Library

Customer
Chip/Chiplets
and/or
Security IP

MIL-SPEC Environments

Program
Modified
Environments

Program
Unique
Environments

COTS Boards Modified COTS Boards

Unique Form
Factors and/or
Integrated
Subassemblies

Mercury Systems

Innovating in 2.5/3D chiplitized architectures for the Aerospace and Defense industry

Founded in 1981

Solutions nurpose-built for all

Solutions purpose-built for all Aerospace & Defense customers

Business model at the intersection of high-tech and defense

Making commercial technology profoundly more accessible

One of the largest commercial companies providing secure sensor and mission processing to the Defense industry

NASDAQ: MRCY

Publicly traded company since 1998

Our trusted U.S. focused, secure design, manufacturing and integration facilities - Phoenix AZ site is largest in employees and production

ADVANCED MICROELECTRONICS MANUFACTURING CENTER (PHOENIX AZ)

- 350+ Employees (14% of total Mercury Systems Employees)
- 110,000 square feet of cleanrooms (Ability to double manufacturing)
- Delivering Trusted Microelectronics to: Defense, Aerospace, Space and Intelligence

Over 200,000 Component and 60,000 Circuit Boards per year

FLORIDA

Mercury solutions deployed on 300+ programs with 25+ primes

Mercury Capabilities

- Trusted, on-shore manufacturing
 - AS9100, DMEA, Proven experience focused on A&D
 - Cleared facility and workforce
- On-site engineering for technology agility and acceleration
 - Full design including signal and power integrity engineering for high-density integration
 - Mechanical, thermal and process engineering
 - Custom-designed silicon interposer substrate
 - Ideal for harsh environments from gun-hardening to space
- Full solution and lifecycle support

13 00113

Chipletized Architectures Are the Future, But Before We Get There....

Challenges & Opportunities

Mature Chiplet Ecosystem

Industry should continue to work towards standardization of chip-to-chip communications to enable sustainable business model

Onshore Access to State-of-the-Art Interposers & Substrates

Build up onshore manufacturers that can support lower volumes and high mix for the DoD while reducing cycling time

Process Design Kit for Package Assembly

Automated tools for customers to select from a library of chiplets to create producible System in Packages (SiPs)

Device Enablement & Support

Sustainable business model that supports diversity of chipletized architectures for different consumers

