Thermo-compression Bonding Assembly Technology

IMAPs March 2023
Agenda

• Packaging Technology Roadmap
• Fluxless TCB
• Compare TCB to Hybrid Bonding
 • Process steps
 • Cost Model
• Cu to Cu TCB
Introduction

• **Moore’s Law** has driven performance for the SEMI industry for decades. However, in recent years, Moore’s law has ground to a halt:
 • Rising wafer manufacturing cost & increased chip design complexity outweigh the benefits of die shrinks
 • This results in lower pace of new Si nodes with fewer and fewer state-of-the art fab’s being constructed

• **Where does increased performance come from**
 • The answer is packaging technology
 • Increasing 2D and 3D I/O and chip packaging density through Heterogeneous Integration

• **Heterogeneous 2.5D/3D re-integration of dissimilar chips (“More than Moore”):**
 • Combining different functions, from different wafers, with different feature sizes...

• **Heterogeneous Integration** requires high bandwidth and low power communication between chiplets,
 • This drives an aggressive roadmap for Advanced Packaging technologies and fine-pitch interconnects
Example Interconnect Pitch Scaling – Intel AP Roadmap

Embedded Multi-die Interconnect (EMIB)
- bump pitch **50-40 microns**
 - leads industry
 - first 2.5D embedded bridge solution
 - products shipping since 2017

Foveros Technology
- bump pitch **50-36 microns**
 - wafer-level packaging capabilities
 - first-of-its-kind 3D stacking solution

Foveros Omni
- bump pitch **~25 microns**
 - next gen Foveros technology
 - unbounded flexibility with performance 3D stacking technology for die-to-die interconnect and modular designs

Foveros Direct
- bump pitch **< 10 microns**
 - direct copper-to-copper bonding for low resistance interconnects
 - blurs the boundary between where the water ends and the package begins

Source: Electronic Design Magazine
Interconnect Roadmap for Advanced Packages

- C4 Flip Chip
- Fluxless TCB (Solder)
- Thermo-Compression Bonding
- Cu to Cu TCB
- Hybrid Bonding bumpless
- Cu-Cu Interconnect
- Sn-Based Solder Interconnect

I/O Density [I/Os / mm²]

I/O Pitch [μm]
Interconnect Pitch Scaling for Heterogeneous Integration

- **I/O Density [I/Os/mm²]**
 - 10^1
 - 10^2
 - 10^3
 - 10^4
 - 10^5

- **C4 Flip Chip**
 - Mass reflow

- **Chip-to-Substrate (C2S) & Chip-to-Wafer (C2W) solution for TC-CUF/NCP/NCF**

- **Thermo-Compression Bonding**
 - Local reflow

- **Thermo-Compression Bonding (local reflow)**

- **Hybrid Bonding**
 - Bumpless

- **Fluxless TCB**
 - Inert bonding environment & large die capability.
 - Flux-less oxide reduction bonding with formic acid

- **Cu-to-Cu TCB**

- **WCC# Accuracy**
 - > 1.0
 - 0.5
 - 0.3

Refers to the Upper Control Limit for Worst Case Corner Cpk_wcc > 1. Includes repeatability and mean offset!

© Kulicke & Soffa | Technology Innovation. Solutions | www.kns.com

Confidential 6
Challenges with Flux Based TCB Process

- Fluxing adds TCB process complexity
- Pre-bonding fluxing step is required:
 - Flux pre-applied to the substrate has a limited activation time and imposes limits on maximum substrate temperature
 - Dipping large die in flux can be challenging and extended flux activations times may be required to fully clean the substrate
- Post-bonding flux cleaning step is required even for ‘no-clean’ materials:
 - Flux residual clean-up required for high package reliability after underfilling
 - Thorough cleaning of large chip areas with small chip gap and/or high density interconnects can be challenging and time consuming
Advantages of Fluxless TCB Process

- No pre-applied flux or flux cleaning steps
- No flux vapor contamination of equipment, tooling, or sensitive components such as optical/photonic devices
- Possible to run higher substrate and/or die contact temperatures for higher quality interconnects as there is no flux burn off time needed
- Higher accuracy/more consistent alignment possible as there is no flux for the vision to see features through
Oxide Reduction via Formic Acid Vapor

Formic acid molecular formula: HCOOH

- Step 1: Sn (II) formate creation ($100^\circ C < T < 150^\circ C$)
 \[SnO(s) + 2HCOOH(g) \rightarrow Sn(COOH)_{2(s)} + H_2O(g) \]
 - surface oxide on solder
 - FA vapor
 - organic tin formate layer replaces oxide
 - water vapor byproduct

- Step 2: Sn (II) formate decomposition ($T > 150^\circ C$)
 \[Sn(COOH)_{2(s)} \rightarrow Sn(s) + 2CO_2(g) + H_2(g) \]
 - tin layer remains on solder surface
 - carbon dioxide and hydrogen byproducts
Example In-Situ Formic Acid TCB Process Flow

FA trigger and reduction

- Bondhead, 180 °C
- Silicone chip
- Solder cap
- Cu-pads
- Laminate substrate
- Chuck, 180 °C

Thermo-Compression Bonding

- Bondhead, 320 °C
- Silicone chip
- Laminate substrate
- Chuck, 180 °C

final assembly after bonding

- Bondhead, 160 °C
- Silicone chip
- Laminate substrate
- Chuck, 180 °C
Schematic of a Formic Acid Delivery System

- **Nitrogen Supply**
- **Nitrogen** shielding gas
- **Bubbler**
- **Formic Acid**
- **Exhaust**
- **Upper Bondhead**
- **Lower Bondhead / TCB heater**
- **Vacuum**

Bondhead Shroud
- The bondhead mounted shroud creates a mini formic acid rich environment prior to and during chip placement

Nitrogen saturated with formic acid vapor

Chip
- Cu/Sn pillars
- Cu/Sn pads

Substrate
- Substrate & heater
- Nitrogen saturated with formic acid vapor
Formic Acid Delivery System Overview

- Formic acid vapor is delivered to the bonding area using a bondhead mounted delivery shroud.
Animation of the Fluxless Bond Process
APTURA – 3rd Generation TCB Tool

• Specifically designed for the most demanding TCB processes
 • Large die, ultra-fine pitch 10um, multi-die

• High throughput dual head bonding

• Up to 70 mm die size

• Accuracy < 1.0 um 3S

• Active co-planarity control with non-contact measurement

• Advanced TCB process options
 • Inert environment bond chamber < 100 ppm O2
 • K&S patented flux-less bonding
Future Accuracy Needs

- Heterogeneous integration and packaging are replacing Moore’s law in driving semiconductor performance. This trend is driving interconnect pitch scaling requirements

<table>
<thead>
<tr>
<th>Pitch (um)</th>
<th>Bump Dia (um)</th>
<th>Bump gap (um)</th>
<th>Accuracy requirements</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>24.5 (70%)</td>
<td>10.5</td>
<td>2.0 um</td>
<td>Aptura → 1.0 µm</td>
</tr>
<tr>
<td>25</td>
<td>17.5 (70%)</td>
<td>7.5</td>
<td>1.5 um</td>
<td>Aptura → 1.0 µm</td>
</tr>
<tr>
<td>10</td>
<td>5.5 (55%)</td>
<td>4.5</td>
<td>0.8 um</td>
<td>Aptura Next → 0.8 µm</td>
</tr>
</tbody>
</table>

Source: Intel, ECTC 2022

Intel 10um Test Vehicle
Bump dia = 55% pitch

Source: Intel, ECTC 2022

Intel 20um Test Vehicle
Bump dia = 70% pitch

Source: Intel, ECTC 2022
Fluxless Bonding Productivity

- The fluxless process delivers about the same productivity as a conventional TCB flux based TCB processes

- The formic acid process requires a short pre-bonding cleaning step for formic acid vapor to remove oxides from the chip and substrate

- No time required for flux dipping and flux activation during bonding
Formic Acid vs. Flux Based Example Bond Cycle

- The FA process delivers nearly the same productivity as a conventional flux based TCB process:
Copper-to-Solder Fluxless Bonding in Inert Environment

- 30 mm X 30 mm die-to-die assembly
- Top die: Solder capped copper pillar
- Bottom die: Cu pillar
- Interconnect: Cu-to-Solder
Cu-Solder Bonding in Inert Environment after 45min Heat Exposure

- Cu surface was held at 150 C in nitrogen for 45 min before bonding process
- Oxygen concentration in nitrogen chamber was less than 100 ppm
- Localized FA supply get rid of any natural or existing copper oxides prior to bonding step

• Pre-bond FA vapor cleaning time 1 sec
Fluxless TCB vs Hybrid Bonding – C2W Process Flows

Fluxless TCB

Component Wafer

Substrate Wafer

Cu Pillar • Solder (µBumps)

Dicing

Underfill & Cure

Hybrid Bonding

Component Wafer

Substrate Wafer

Si

ILD

via layer & metal pads

CMP

Plasma Dicing

Surface Treatment

Batch Anneal

Hybrid Bonding

• added process complexity
• inspections for process control

- CMP – nm-scale roughness
- Plasma Dicing – minimized particle generation
- Surface Treatment – clean, plasma activation, hydration, oxide removal
Fluxless TCB vs Hybrid Bonding – Pro’s & Con’s

<table>
<thead>
<tr>
<th>Packaging Considerations</th>
<th>Fluxless TCB</th>
<th>Hybrid Bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Finest Pitch</td>
<td>20µm, extendable to 10µm or below</td>
<td>< 10µm</td>
</tr>
<tr>
<td>• Productivity</td>
<td>up to 1200 units per hour</td>
<td>1000 – 2000 units per hour</td>
</tr>
<tr>
<td>• Process Sensitivity to Debris</td>
<td>not sensitive to small debris</td>
<td>super critical – small debris = yield loss</td>
</tr>
<tr>
<td>• Assembly Cleanliness Req’s</td>
<td>use existing facilities</td>
<td>similar to Front-End</td>
</tr>
<tr>
<td>• Die Surface Roughness</td>
<td>no change from current practice</td>
<td>special CMP, < 0.5nm Ra, Cu dishing critical</td>
</tr>
<tr>
<td>• Die Surface Preparation</td>
<td>no change from current practice</td>
<td>wet clean, plasma activation, hydration, oxide removal</td>
</tr>
<tr>
<td>• Special Dicing Requirements</td>
<td>no change from current practice</td>
<td>plasma dicing</td>
</tr>
<tr>
<td>• Cu Area vs Dielectric Layout</td>
<td>no special requirements</td>
<td>Needs carefully control – Cu distribution and %</td>
</tr>
<tr>
<td>• P&P Accuracy Requirements</td>
<td>proven 1µm @ 3σ</td>
<td>< 200nm @ 3σ</td>
</tr>
<tr>
<td>• Bonding Process</td>
<td>large temperature cycle</td>
<td>room temperature bonding, very low force</td>
</tr>
<tr>
<td>• Interconnect</td>
<td>liquidous</td>
<td>non-liquidous – special (1,1,1) plating R&D</td>
</tr>
<tr>
<td>• Underfill</td>
<td>ultra fine pitch challenges – exploring new methods</td>
<td>no underfill required</td>
</tr>
<tr>
<td>• Start Up Cost</td>
<td>natural extension of TCB</td>
<td>huge investment required</td>
</tr>
<tr>
<td>• Cost of Ownership</td>
<td>lower cost</td>
<td>higher cost</td>
</tr>
</tbody>
</table>
Fluxless TCB vs Hybrid – Process Cost Comparison

- Bottoms-up «activity-based» cost modeling, allocating cost to each process step:
 - Cost categories: labor, capital, material/tooling, yield loss# and indirect/OH cost

Assumptions:
- Process cost comparison assumes 100% yield for both processes.
- Package cost includes Si cost (~9300$ per 7nm node wafer)
- Assumes Large Die.
Fluxless TCB vs Hybrid – Yield & Package Cost Comparison

- TCB much less sensitive to particles, Hybrid Bonding requires front-end cleanliness
- Small particles covered in underfill or solder – no effect for TCB

- Hybrid Bonding yield drastically dropping as die size increases:
 - 10 good die out of 16 total
 - 63% yield
 - 1 good die out of 4 total
 - 25% yield
 - 0 good die out of 1 total
 - 0% yield

- Hybrid Bonding package cost vs defect density:
 - TCB typically @ ≥ 99.8% yield
 - Large Die stacking further multiplier of single-layer yield loss

Assuming particles as the only source of yield loss, i.e. perfect alignment, perfect Cu pad dishing, etc.
High Density Cu-Cu Interconnects: K&S-UCLA Partnership

- Cu Pillar pitch: 10 µm
- Total contacts per chip: 36,000
- Roughness on both pillar & pad: < 2 nm
- Test vehicles fabricated by UCLA
- TCB Tool: K&S with FA delivery system

S. Jangam et al., ECTC 2019
K&S-UCLA Paper

Chip with bond pads
Substrate with Cu-pillars

Bonded Interface

© Kulicke & Soffa | Technology Innovation . Solutions | www.kns.com
Improving throughput of conventional TCB

- Conventional TCB has challenges
 - Single step TCB is time consuming (30s – 40s/die)

- To overcome these challenges, we propose a two-stage TCB.
 - **Stage 1:** die tacking process (< 10s).
 - **Stage 2:** batch annealing process
 - Annealing several wafers at once eliminates anneal time as a throughput concern.
 - Current process > 320 UPH (~11.2s/die)

Throughput improvement

- 90 UPH \(\rightarrow\) 320 UPH \(\rightarrow\) 1100 UPH
Executive summary

• We have developed a high throughput (up to 1000 UPH) thermal compression bonding scheme using a novel two-stage bonding approach.

• We have achieved 2x MIL-SPEC bonding strength (> 100N for 2x2mm² dielets) post anneal with specific contact resistance ~ 1.2x10⁻⁹ ohm-cm².

• We have demonstrated MIL-SPEC reliability using UHAST 96 hours testing.

• We believe that TCB using this scheme is a viable and potentially more manufacturable assembly process down to ~7 µm bump pitches, with further scaling possible with tool alignment improvements.
Hybrid-like Cu-Cu Formic Acid Process on the Aptura

- We’ve developed a Cu to Cu interconnect for customers as an alternative to Hybrid bonding
- Process uses very short pads on the die and substrate prepared with low roughness
- The Formic acid TCB process uses < 5 sec total cleaning and bonding time which results in well attached chips, in a class 10k cleanroom
- The CMP like finish helps to enables reduces bonding pressures to <10 MPa (applied for 2 sec.)
- Process is capable of fine pitches < 10 um
- No additional equipment upgrade needed beyond the normal formic acid
- 2 step process: Cross section image shows an example bond before annealing
Summary

- Heterogeneous integration and packaging are replacing Moore’s law in driving semiconductor performance. This trend is driving interconnect pitch scaling requirements.

- Flux contamination and residue limits the pitch of thermo-compression flip chip and is a serious problem for ultra fine pitch interconnect.

- K&S has developed a fluxless TCB process for chip to substrate and chip to wafer bonders which solves problems with flux.

- The process is capable and being used for Sn to Sn, Sn to Cu, and Cu to Cu interconnect.

- Formic acid vapor fluxless TCB can extend the pitch capability for flip chip packages down to 10 – 20µm and possibly beyond.

- Fluxless TCB bonding is an extension of standard semiconductor assembly practices and does not require massive process and infrastructure changes that Hybrid bonding does.

- The process and equipment have been matured and are in high volume manufacturing.
Questions?

Thank You!
Copyright Statement

This PowerPoint presentation and all of its contents are protected under international and United States Copyright law.

Any reproduction or use of all or any part of this presentation without the express written consent of K&S is prohibited.
Fluxless High Volume Manufacturing Readiness

- Chemical safety has been designed into the formic acid (FA) bonder system from the early design stages
- Machine conforms to multiple chemical safety standards including SEMI S2, S6, and EN 1127-1
- Machine features redundant sensors/valves on safety critical functions and safety systems are monitored/controlled by a safety rated PLC
- FA is only flammable under a limited set of conditions, however all electronics that could be exposed to formic acid under normal and failure condition are protected by intrinsically safe barriers
- Additionally multiple environmental monitor sensors are present to monitor FA vapor concentration at various points in the machine
Thermal compression bonding is NOT demanding

<table>
<thead>
<tr>
<th></th>
<th>Hybrid Bonding</th>
<th>Direct thermal compression bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Development</td>
<td>• Necessitates meticulous control over 1) dielectric flatness (6σ roughness ≤ 1 nm) and 2) metal recess</td>
<td>• Simpler process development: only optimizing the metal-metal bonding</td>
</tr>
<tr>
<td></td>
<td>• Extensive CMP optimization</td>
<td>• Relaxed CMP requirements</td>
</tr>
<tr>
<td>Dicing process</td>
<td>• Mandatory particle-free dicing.</td>
<td>• Cu pads/pillars are recessed so, blade dicing with standard wet cleaning is feasible.</td>
</tr>
<tr>
<td>Bonding environment & activation</td>
<td>• ISO-4 or below (Literature suggests ISO-2)</td>
<td>• ISO-8 and above, even outside cleanroom.</td>
</tr>
<tr>
<td></td>
<td>• Plasma activation and particulate removal prior to bonding is crucial.</td>
<td>• Requires in-situ reducing environment during bonding – studied extensively [1].</td>
</tr>
<tr>
<td>Dielet size</td>
<td>• Almost any size due to less tacking pressure requirements.</td>
<td>• Limited by max. bond-head pressure during tacking.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Works well for dielet sizes within dielet golden regime.</td>
</tr>
<tr>
<td>Throughput</td>
<td>• 1000+ units-per-hour (UPH) due to fast dielectric bonding during tacking phase.</td>
<td>• 1000+ UPH possible with optimized tack and anneal process.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>• TCB has low process development cost as well as low operation cost compared to HB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCB is less sensitive to particles during dicing and bonding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Therefore, we believe TCB should be used for bonding pitches up-to 7 µm.</td>
<td></td>
</tr>
</tbody>
</table>
