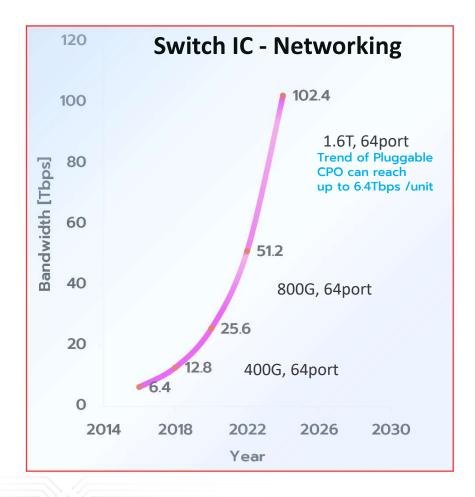
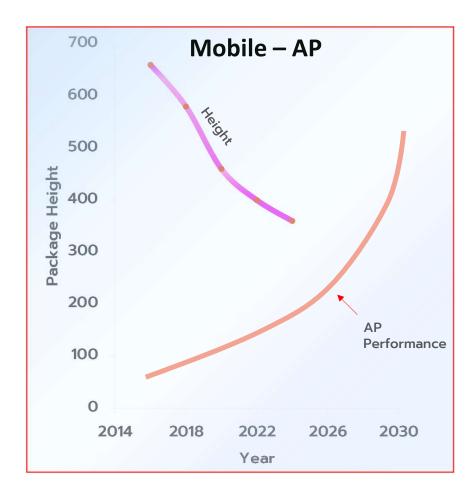


Performance Enablement Through VIPack FOPOP for Mobile and Networking

Meiju Lu & Vincent Lin- ASE CRD Chienfan Chen A5 Mark Gerber –Engineering & Technical Marketing March 2023

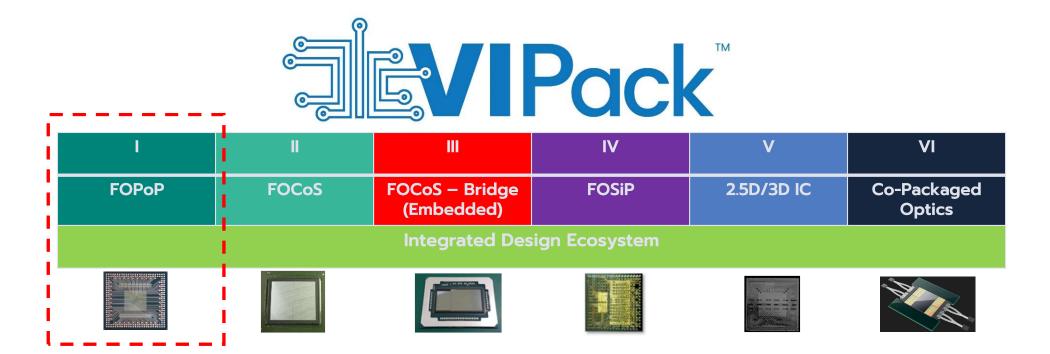
aseglobal.com

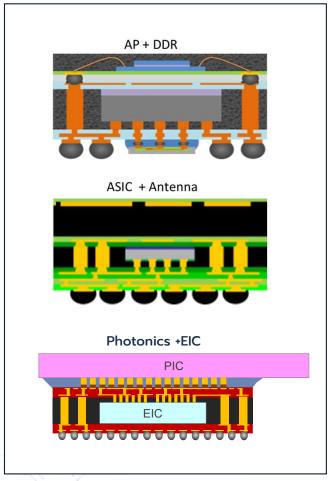

Outline:



- Market Drivers
- Mobile & Network Performance Driver and Solutions
- SiPh FOPOP Sub Module & Key Attributes
- Electrical and Thermal Modeling Simulation
- Wafer Level Optical Test
- Conclusion

Market Drivers




Vertically Integrated Package Platform - VIPack™

FOPOP Mobile & Networking Performance Enablement

Application:

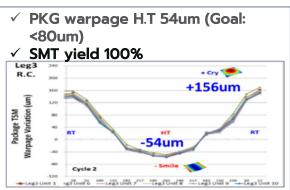
- AP + DDR Memory (4G/5G)
- ASIC + Antenna (5G)
- SiPh + EIC (Networking)

Development Features:

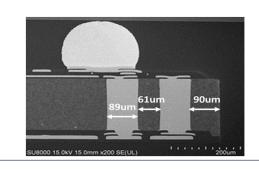
Mobile:

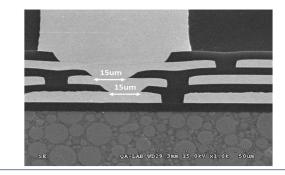
- Thinner Form Factor
 HBPoP ~550um
 FOPoP below 400um
- TMV + Double-side RDL Layer
- Thin passive IPD integration
- Heterogeneous surface grinding
- Wafer form memory stacking
- Embedded Molding Structure
- Lower Impedance/Insertion Losses in RDL vs HBPOP

Networking:


- Reduced Critical Lengths between PIC/EIC
- XY Size Reduction for additional sub-module integration
- Advanced Process Technology for Photonic Die Etching & Plating
- Bandwidth Density Enablement (Size, Critical Length Reduction)

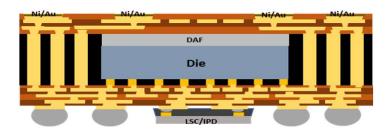
Mobile Performance Drivers & Solutions


Mobile Applications Processor – Device Example



- DAF Die
- √ PKG THK 389um (w/ ball) √ RDL L/S 5/5um
- Die THK 135um
- DAF THK 25um
- ✓ Cu stud 20um
- ✓ Cu post pitch 150um
- ✓ Solder ball 135um
- - ✓ RDL THK 5um
 - ✓ Pl via 15um ✓ PI THK 5um (on RDL)
 - ✓ Die to pillar 110um
 - √ FS & BS-RDL 35/39um.

- √ 150um pitch Cu pillar w/ 180um THK
- √ Tall pillar to PKG edge is 90um (<100um)
 </p>



- ✓ PNL warpage 0.5~2.0mm (Goal: <2.5mm)</p> √ No handling issues Wafer Warpage -1500 -2500 -3000
- √ No delamination be found SAT 100% pass
- ✓ PI via 15um
- ✓ RDL flatness on stacked via w/out dimple

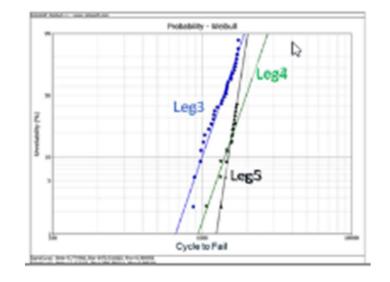
Reliability Test Result of FOPoP

☐ L0 CLR / BLR / Drop test passed

<u>CLR</u>

130°C/85%RH CondB-55C-125C

	TO SAT	MSI	.1	uHAS	T192	TCT1000		
CLR		O/S	SAT	O/S	SAT	O/S	SAT	
1	0F/90	0F/90	0F/90	0F/45	0F/45	0F/45	0F/45	


BLR

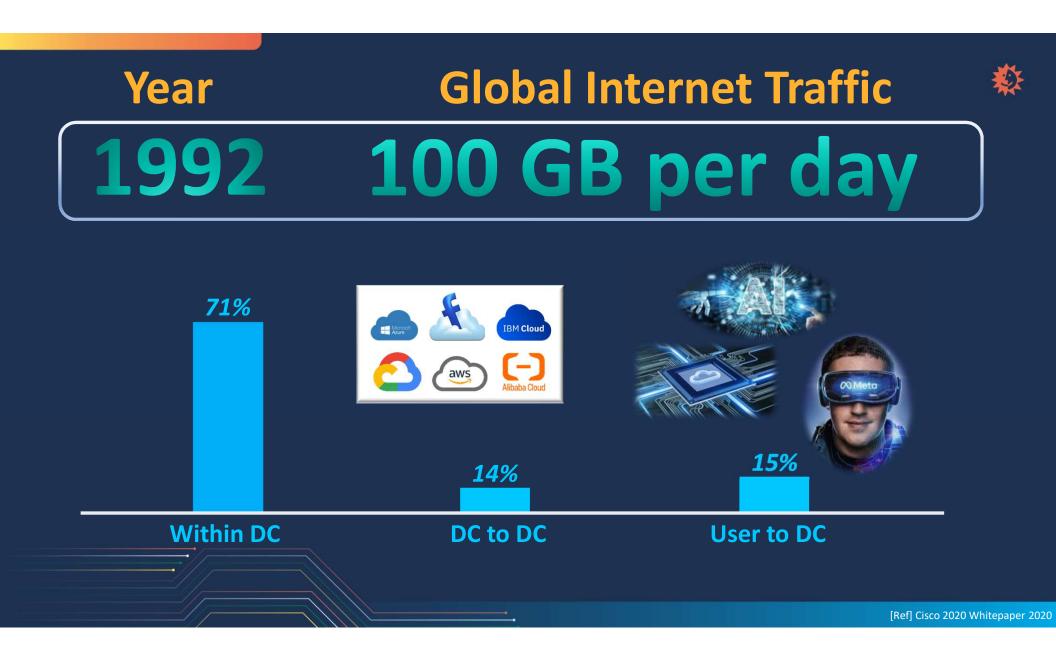
-400	to	850

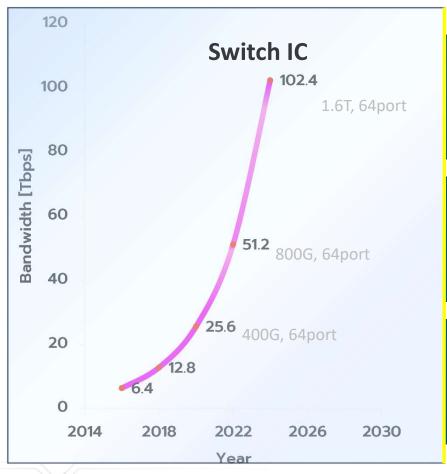
WR Leg#	BS_Cu Ratio RDL1/2	PCB Side	UF	Net	Cycle Count	# of Fails	2-P Weibull Statistics				
							First Fail	5%	50%	63.20%	Beta
3	69.12%/73.5%	A	No	Signal	1774	30F/30	875	880	1382	1473	5.77
4	68.93%/73.3%	А	No	Signal	1774	13F/30	1340	1414	1737	1788	12.63
5	65%/65%	А	No	Signal	1774	8F/30	1068	1248	1970	2100	5.71

Drop Test

WR	BS Cu Ratio	РСВ	UF		Cycle Count	# of Fails	2-P Weibull Statistics				
Leg#	RDL1/2	Side	OF.	Net			First Fail	5%	50%	63.20%	Beta
3	69.12%/73.5%	Α	No	Signal	30	0F/60	-	-	-	-	-
4	68.93%/73.3%	А	No	Signal	30	0F/60	-	-	-	-	-
5	65%/65%	А	No	Signal	30	0F/60		-	-		-

Networking Drivers and Solutions


Emerging Application Markets



Speed Evolution

Replace Cu with Optics

Background: Co-packaged Optics (CPO)

System-level Requirements

Switch IC to Optical Electrical Interface

- CEI-112G-XSR

Optical Fiber Connections

- TX/RX fibers 2x (1x8) for 3.2T module
- ELS fiber 4x for 3.2T
- Total fiber count: 320

Power:

- Switch-51T:900W

- Optical: 1024W, 128 x 8W/400G

- Underside voltage regulators

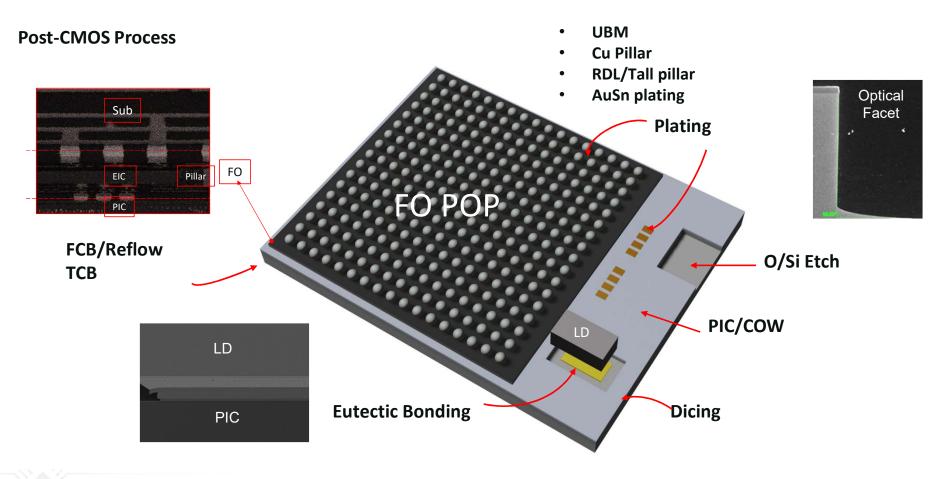
Thermal Considerations

- Top surface components cold plate with water-cooled solution
- Underside heat sink: contact the voltage regulators

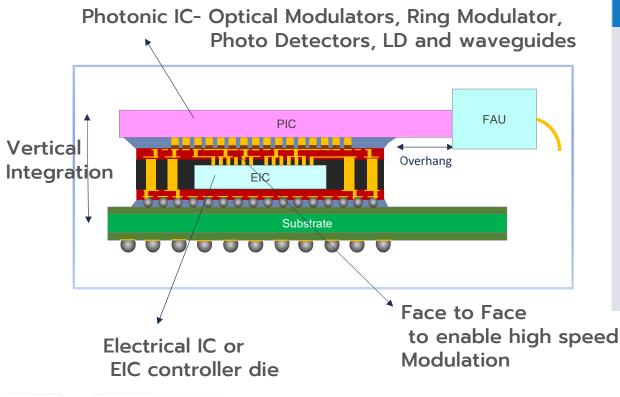
Ref: Co-Packaged Optic Assembly Guidance)
www.copackagedoptics.com

20.1±0.13 22.5±0.13

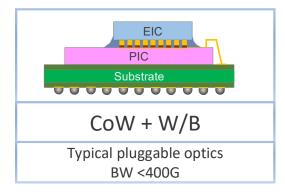
Key Integrating Technologies & Flow

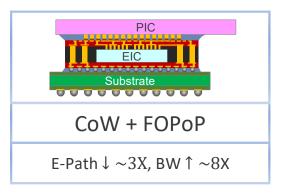


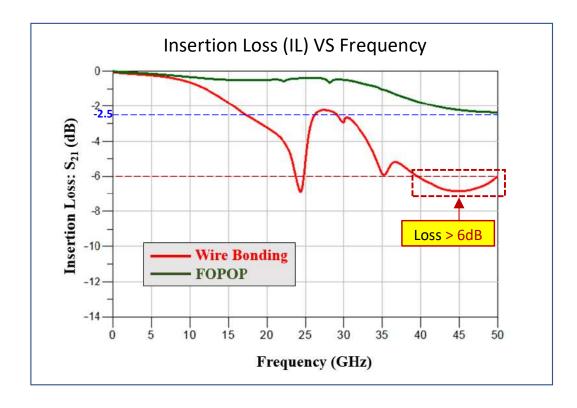
Vertically Integrated Package (VIPack)- FOPOP


Key Integrating Technologies

Typical Structure Attributes for SiPh FOPoP (Custom By Device)

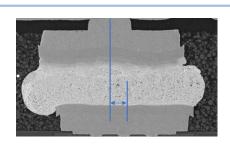


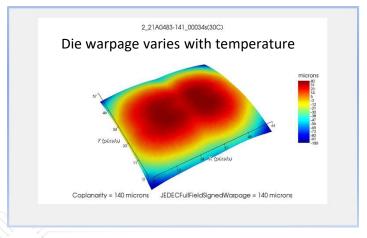



Typical Dimension (Ref: copackagedoptics.com) SiPh engine size ~20x20mm **PIC WLCSP** ~3mm overhang 16x16mm THK:200um **FO POP PKG size** (with T/B CuP bump height) PIC die size 18x17mm THK:750um - With or without V-groove - Typical V-groove pitch 200um Fiber coupling area - Typical V-groove length 2mm - 8-16 channels **PIC Lid** - With overhang or w/o overhang **Bump Pitch** - Typical 130um

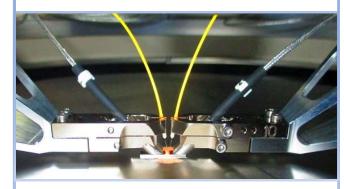
SiPh FOPoP - Electrical Simulation (FOPOP vs COW+WB)

SiPh FOPoP - Thermal Simulation


Package Type		CoW + W/B	CoW + FOPoP			
Thickness	EIC	1	0.07			
(a.u.)	PIC	1	1			
Relative	EIC	68.55	69.64			
Temperature (°C)	PIC	67.30	67.43			
Structure		PIC Substrate	PIC EIC Substrate			
Simulated Data Package with heat sink under 2m/s airflow						

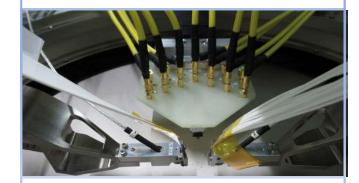

SiPh FOPoP - CTE Mismatches/Warpage Simulation

Challenges: CTE Mismatch/Warpage


[Mitigation Path]

- Proper fan-out design & consideration
- Material selection
- Proper assembly flow
- Bump joints via localized heating

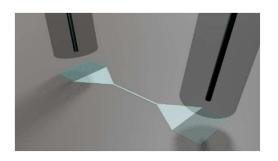
Wafer-level Optical Testing

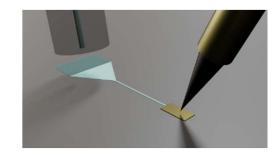

Single Fiber Probing

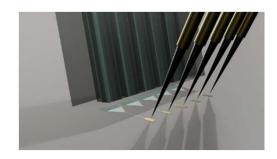
Probe Type: Single mode fiber

Holder: Single fiber

Fiber Array Probing

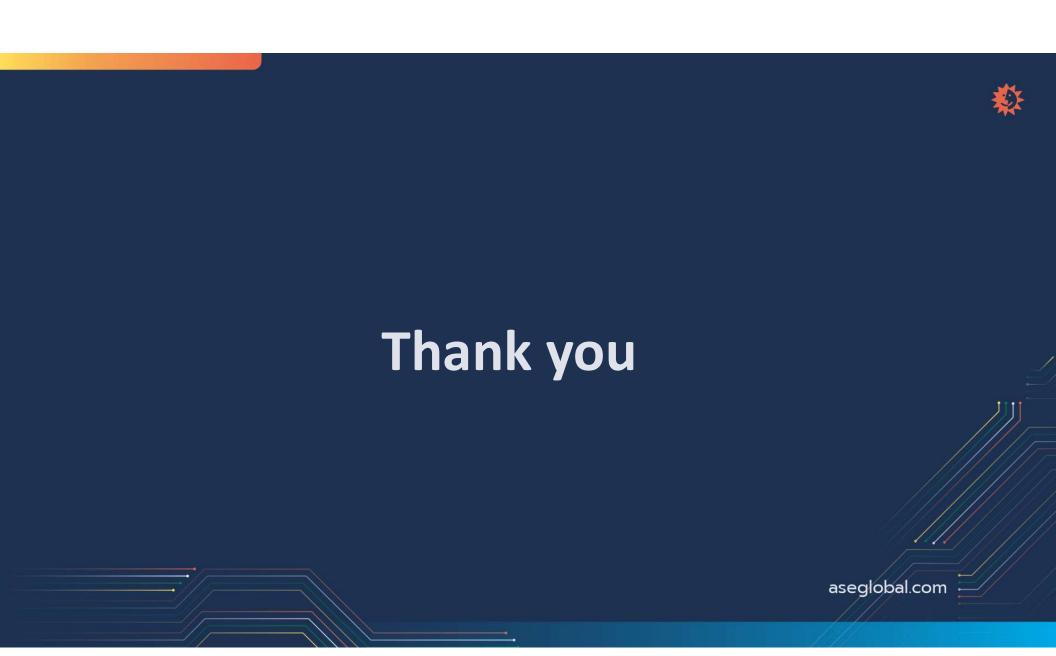

Probe Type: 16ch fiber array


Holder: 8 or 10deg



Wafer-level Optical Testing

Types	Optical Testing	Optoelectronic Testing
DUT	WaveguideSplitter	Diode laser, photodiode, modulatoretc.
Probe	• SMIE/EALL for both norts	SMF/FAU for optical portSingle DC probe/probe card for electrical port.



Conclusion

- The Package-on-Package platform has evolved to enable a next level of performance for both Mobile and Networking through the VIPack FOPOP pillar
- Mobile Application Processors continue to require reduced height while addressing power delivery challenges by leveraging RDL Height benefits and reduced CL.
- Within the Network market space, higher bandwidth density is driving new integration requirements which are being enabled by the VIPack SiPh FOPOP structure
- The more photonic sub-modules that can be integrated, the higher the bandwidth, therefore, size of the Co-Package-Optics module is critical.
- Simulation data shows the SiPh FOPOP shows a reduced insertion loss when compared to the W/B format and showed equivalent thermal performance.
- The VIPack FOPOP and new process enhancements around the photonics die are enabling the next generation of Co-Packaged Optics Network solutions.

