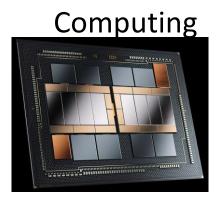
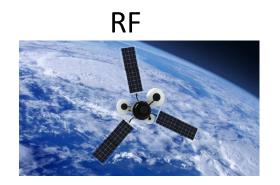
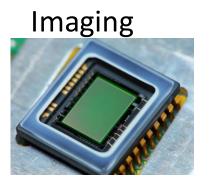


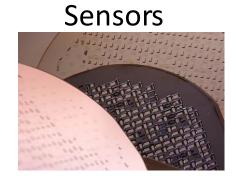
iNEMI MAESTRO: Glass Substrates for mmWave/sub-THz Applications

IMAPS DPC Conference
2023-03
Shelby Nelson (for Paul Ballentine)
Mosaic Microsystems, LLC






About Mosaic Microsystems


Advanced packaging company focused on thin glass for substrates and interposers

Hear more on Wednesday at 2:30 "High-yield Fabrication of Thin Glass Interposers"

Agenda

- Glass properties that matter to mm-Wave packaging
- Stress considerations
- Application-specific choices

What do we mean by "Glass"?

- Must contain silicon and oxygen!
- •Examples
 - ■FS: Fused Silica SiO₂
 - ABS: aluminoborosilicate
 - PSG: photosensitive glass
 - Other
- Amorphous
- Compatible with semiconductor processing environments

Intrinsic properties that most matter for mm-W

- Dielectric constant Dk (Er')
- Loss tangent Df (Tan δ)
- Coefficient of thermal expansion (CTE)
- Resistivity
- Low moisture absorption

Extrinsic properties that matter for mm-W

- Smooth surface
 - Skin effect at higher frequency makes surface roughness increasingly critical
- Low Total Thickness Variation (TTV) of material
 - Need to count on this, to match design
- Ability to form through-glass vias (TGVs)
 - Size and shape can matter
- Ability to achieve correct thickness for given application
- Ability to form 3D structures as needed

Is glass actually advantaged vs incumbents?

Property	Desired	Organic (Isola MT77)	High resistivity single crystal Si (Topsil)	ABS glass (Corning, Schott, AGC)	Fused Silica (Corning)	Photosensitive Glass Ceramic (3DGS)
Resistivity	High	$10^{13}\Omega$ -cm	$10^5\Omega$ -cm	$10^{13}\Omega$ -cm	>10 $^{15}\Omega$ -cm	>10 $^{15}\Omega$ -cm
Dielectric Constant	Low	3.0	11.7	5.0	3.8	As low as 1 with air cavity, bulk=6.4
Loss Tangent	Low	0.0017 @ 10 GHz	0.004 @ 35 GHz	0.006 @ 10 GHz	0.0004 @ 100 GHz	As low as 0.000001 with air cavity, bulk=0.014 @ 10GHz
Surface Roughness	Low	Depends on Cu foil, typically ~ 1 um	< 1 nm	<1 nm	< 1nm	<1nm

Coefficient of Thermal Expansion (CTE) will influence packaging approach and reliability

- CTE of Aluminoborosilicate Glass (ABS): ~3.4 ppm/°C
- CTE of Fused Silica (FS): ~0.5 ppm/°C
- CTE of Photosensitive Glass (PSF): 8.53 ppm/°C

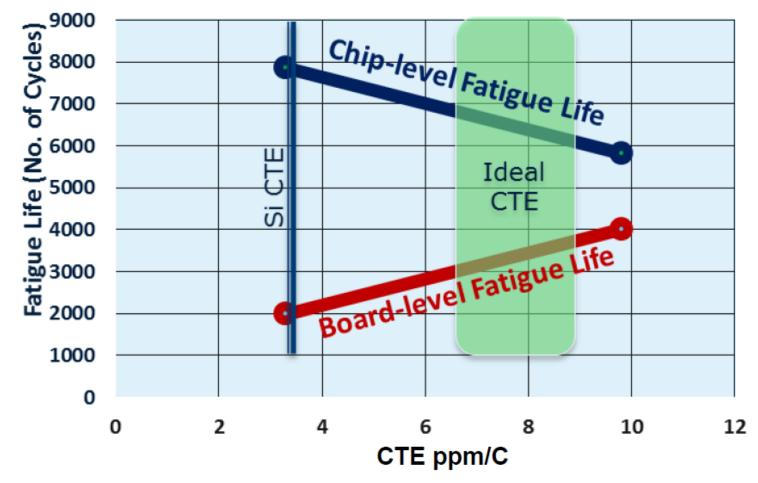
- CTE of Copper: ~16.7 ppm/°C
- CTE of organic laminates: 3 17 ppm/°C

"Heterogeneous Integration Platform"

From Madhavan Swaminathan, GaTech, 3/2021 presentation to iNEMI "Packaging for mmWave Communications"

- Materials with Silicon like properties that maximize chip and board level reliability and support larger body sizes required!
- □ CTE in the range of 7-9 ppm/C with low surface roughness, Young's Modulus and zero moisture absorption required.
- Glass Interposer is a good candidate!

GT-3D Systems Packaging Research Center


iNEMI Seminar

Mar. 11, 2021

One view of how to optimize stresses of packaging for heterogeneous integration

Madhavan Swaminathan, GaTech,3/2021 presentation to iNEMI

Ideal CTE ~ 8 ppm/C

Alternative optimization of packaging stress

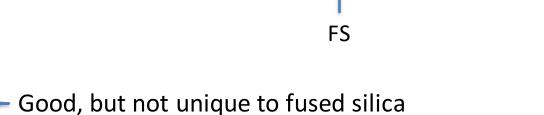
- Follow path of Si interposers
- Good CTE match with Si chips → CTE of ~3 ppm/C
- Separate optimization of interposer/package substrate interface

John Lau, ECTC 2022

Fused silica has low CTE, but low loss properties

8000 9000

7000


4000

2000 2000

may be worth it

Advantages of fused silica glass as substrate

- Fine pitch lines and spaces
- Micron-scale vias (TGV)
- High dimensional stability
- Low moisture absorption

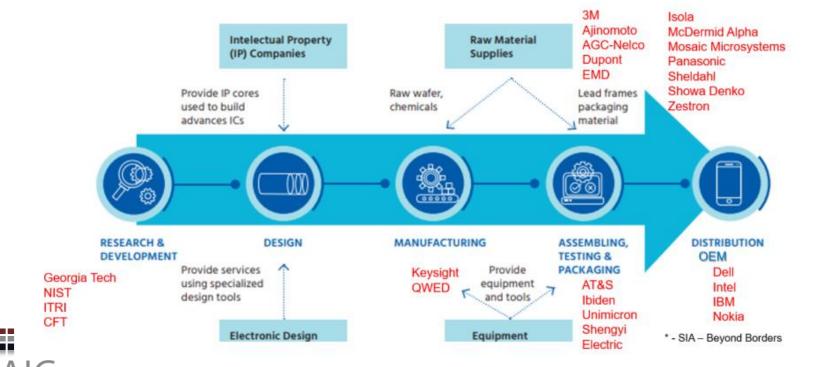
Low Dk and Df: Testing of this was part of previous iNEMI project

Chip-level Fatigue Life

Board-level Fatigue

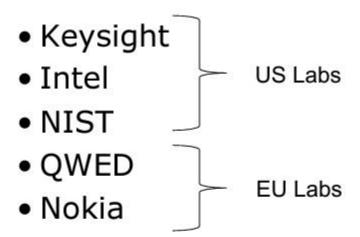
CTE ppm/C

Ideal CTE



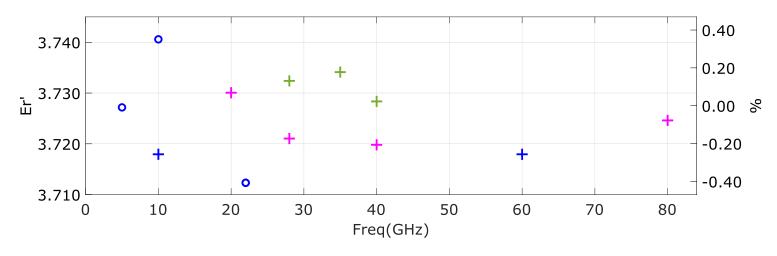
microsystems

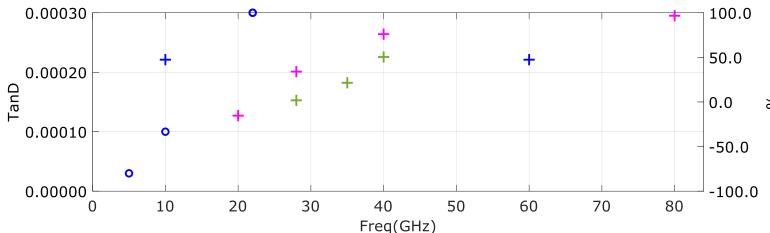
iNEMI 5G Material Project - Project Tasks [completed 2021]


- Task 1 Benchmarking permittivity methods, potential reference materials
- Task 2 Emerging technologies / 100GHz & beyond
- Task 3 Multi Lab Round Robin Reference Experiment
- Task 4 Extension to advanced substrate materials

From report by Michael Hill, Intel

Task 4: testing "real" samples in different labs




Samples submitted by global project members from USA, EU and Asia

High Purity Fused Silica data from iNEMI Round Robin

Take away messages

- Different expert labs give different values
- →see next talk by Lucas Enright!
- Overall, HPFS is very low loss at high frequency

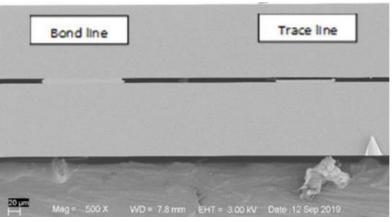
Agenda

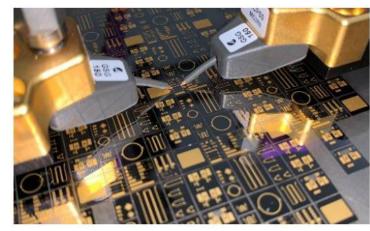
- Glass properties that matter to mm-Wave packaging
- Stress considerations
- Application-specific choices

Application space for "5G / mm-W" glass materials is complex

Glass is being used for:

- Heterogeneous integration for high frequency I/O
- Antenna structures for mm-W RF
- ■Splitters, combiners, band pass filters, diplexers, passive RF filters


- Details of each application make a big difference
- Different glasses can be used to good effect



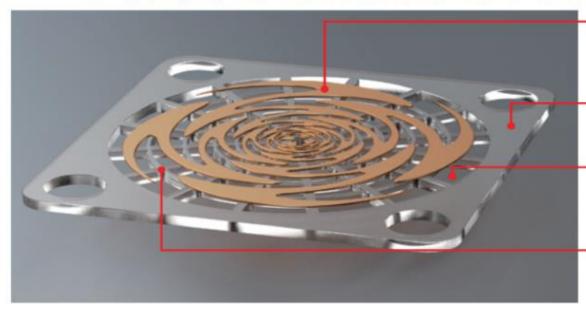
Example of mm-W packaging in thin FS glass (GE & Mosaic)

- 0.15 mm thick glass
- Thermal compression bond Au
- Wafers processed by GE Research

2-layer RF interposer cross section

2-layer RF interposer under test

- Analysis shows glass based approach can provide 50% lower loss with standard glass. More than 70% with fused silica
- In some applications, >7x reduce package size volume (e.g. filters)
- Primary benefit of glass is from impact of roughness/skin effect, which is pronounced in these designs that can have conductor lengths as long as 50 mm



Example of mm-W packaging in photosensitive glass (3DGS)

Phased Array (PA), dipole, sinuous, and patch antennas with superior dielectric (Dk) and loss tangent specifications

1) Antenna Element

Custom-designed antenna element rests on thin glass rails, surrounded by ≥ 95% air

2) Glass Substrate and Frame

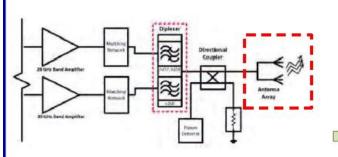
Glass support structure enables easy device handling

3) Air Gap

Dielectric constants from 1.5 to 6.4 are achievable by controlling the glass-to-air-gap ratios

4) Glass Support Rails

150-micron thick, 15-micron wide glass supports maintain the structural integrity of the antenna



Example of mm-W packaging in ABS (Ga Tech)

Madhavan Swaminathan, GaTech, 3/2021 presentation to iNEMI

Antenna Integration (Receive) – 5G n257-n261

Thickness

7 µm

15 µm

7 um

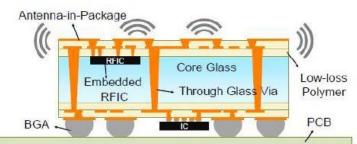
15 µm

100 µm

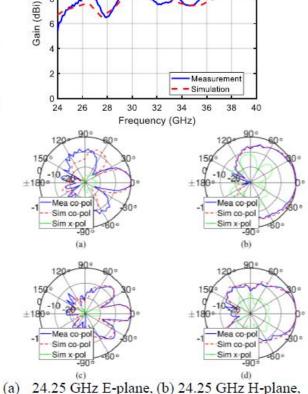
30 µm

Material

Copper


Copper

JSR polymer


JSR polymer

AGC EN-A1

JSR polymer

L	

Tong Hong et al, IEEE AWPL, 2020

Layer

M1 (Top)

Dielectric-1

M2

Dielectric-2

Core-Glass

Dielectric-3(Bottom)

(a) 24.25 GHz E-plane, (b) 24.25 GHz H-plane, (c) 40 GHz E-plane, and (d) 40 GHz H-plane 14

iNEMI Seminar 00

Conclusion

- Glass substrates are playing a role in mm-W packaging
- Types of glass are abundant, as are ways to use them
- This presents a challenge for the iNEMI Roadmapping team
 - Too much complexity makes the Roadmap hard to use
 - ■Too much simplicity makes the Roadmap irrelevant

