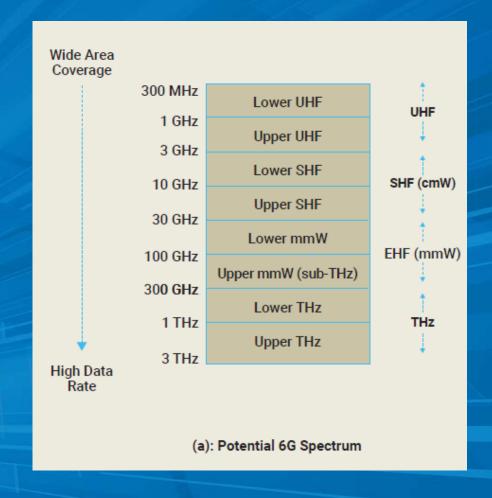
NIST Advanced Manufacturing Technology (MfgTech) Roadmap

5G/6G mmWave Materials and Electrical Test Technology (5G/6G MAESTRO)

March 14, 2023 IMAPS DPC 2023

Project Leader: Dr. Urmi Ray, iNEMI


Supported by: National Institute of Standards and Technology (NIST) Office of Advanced Manufacturing

FEDERAL AWARD ID NUMBER: 70NANB22H050

https://www.inemi.org/maestro

Project Introduction & Status

Email: urmi.ray@inemi.org

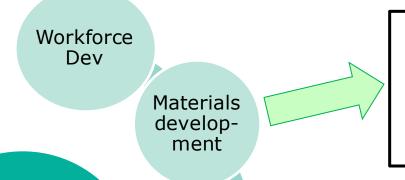
iNEMI: 5G/6G MAESTRO - Project Intro

Project Duration: 1 May 2022 – 30 Sep 2023 (18 months)

Project Objective

Create a technology roadmap

 Develop a comprehensive 10-year hardware roadmap for mmWave materials development & electrical characterization and testing.


Develop a U.S.-focused implementation strategy

- Recommend a a U.S.-centric, cross-supply-chain consortium to execute the vision of the roadmap, the foundations for a strong U.S. manufacturing ecosystem in RF materials and testing.
- Promote the growth of a strong and diverse U.S. workforce in RF communication technologies, by proposing a plan of university curricula development and training.

5G/6G MAESTRO: Technology Scope

110GHz-170GHz (D-Band), 220-350GHz (G Band)

Electrical

test

mmWave frequency bands

- Roadmap materials to meet functional requirements on the loss tangent and dielectric constant
- Mechanical and thermal properties in scope
- Constraint: right cost-point & manufacturability at scale

5G/6G cellular & other applications

Characterization

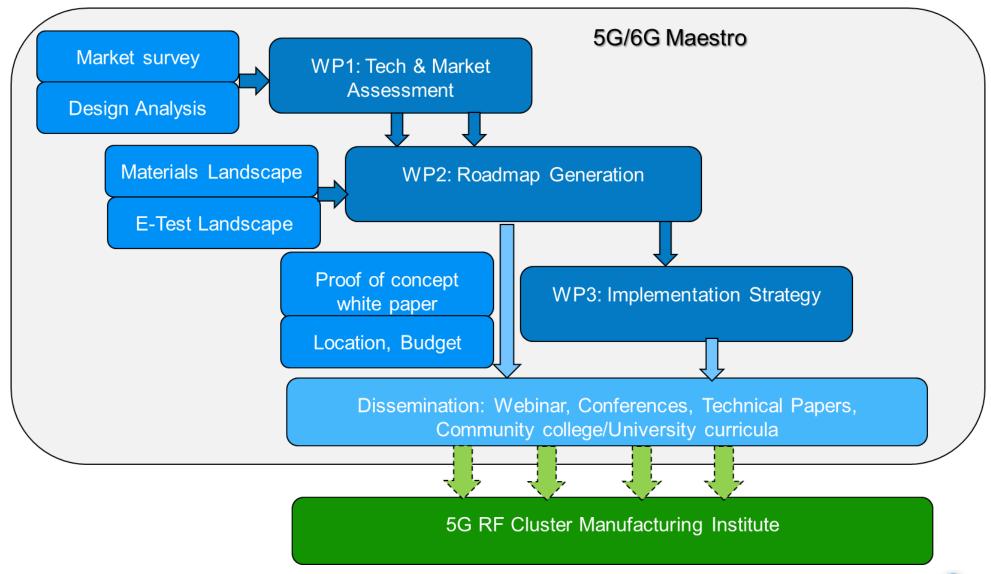
- Identify techniques for repeatable fast low-loss material characterization
- Address lack of standard reference materials (SRM)
- Propose cross-industry approaches, enabling cross-supplier comparisons

Mfg Scaleup proposal

- Transition from contact testing to over-the-air testing, particularly with pervasive use of massive MIMO at mmWave frequencies
- Consider changes in RF front-end packaging, including emergence of antenna-in-package technology
- Scaling up from lab-level testing to high-volume manufacturing environments

iNEMI 5G/6G MAESTRO: Partners

Roadmap contributors are leaders in this field from industry, universities and research institutes



For further information and to get involved, please contact Dr. Urmi Ray (urmi.ray@inemi.org)

iNEMI 5G/6G MAESTRO: Project Flow

- Roadmap Creation is focused on:
 - Low Loss Materials Development
 - Materials Characterization
 - Electrical Test
- Project is divided into 4 Work packages

WP Number	Work Package Title	WP Lead	Start Month	End month	Status
WP1	Technology & Market needs assessment	TechSearch	1	7	✓ Complete
WP2	Roadmap development	iNEMI	2-3	13	In flight, on track
WP3	Implementation strategy development	iNEMI	10	18	In flight
WP4	Operational Structure & Program Management	iNEMI	1	18	In flight

iNEMI 5G/6G MAESTRO: Overall Timeline

Month		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
WP	Task																	
WP1	Market Survey																	
(Market	Design Analysis																	
assess.)	& Trends										Complete							
	Webinars &				D		D	D					•					
	Report										<u> </u>	<u> </u>	I	T T	I			
	(D1.1, D1.2)																	
14400																		
WP2	Landscaping							D										
(Road- map)	(D2.1)												D					
Παρ	Roadmap content creation																	
	(D2.2)																	
	Roadmap													D				
	promotion																	
	(D2.3)																	
WP3	Develop																	
(Implem.	Technical																	
strategy)	Definition																	
	Develop																	
	Execution Detail																	
	Report (D3.1)																	
1445.4																		
WP4	Quarterly			Q	D		Q	D		Q	D		Q	D		Q	D	
(Admin	reporting																	
& gov.)	Final report																	

iNEMI 5G/6G MAESTRO: Post Project Plans

- Continue the dissemination of the elements of the roadmap and workforce, educational training, conferences
- Georgia Institute of Technology and FIU will be incorporating suitable elements into course work and specialized seminar series.
- Explore with NIST and the Dept of Commerce where and how the RF manufacturing team (RF Cluster) can be formed. Propose the formation of a RF Cluster as either a new funded MFG USA or a satellite to a current MFG USA

Project Status 1912 Assessment) Assessment)

• COMPLETE

- 3 reports completed and available in February
 - Market Assessment Report by TechSearch International, Inc.
 - System Design Analysis by Florida International University
 - Identification of Next-Generation Dielectric Materials and Testing Needs by Georgia Institute of Technology
- 1st Webinar/Workshop Sep 2022
- 2nd Webinar/Workshop 9 Feb, 2023

Project Status – WP1

- WP1 Market Assessment Report by TechSearch International, Inc. –Jan Vardaman
- Key Requirements for Market Segments identified through survey and 1:1 interviews

Table of Contents

Introduction
Project Goals and Objectives
WP1 Technology and Market Updates4
Overview of Market Assessment Report5
Mobile Phones
RF FEM
Power Amplifier
Smartphone Antennas
Infrastructure
Consumer Premises Equipment9
Small Cells9
Automotive Radar10
Defense
Antenna, Material, and Test Concerns10
Team Members and Contributors
Contributors13
Maestro Team Members
Acronyms/Abbreviations13
Acknowledgements

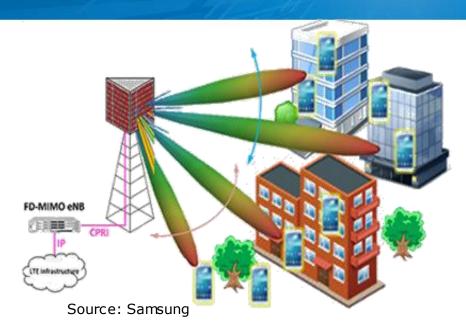
Project Status – WP1

- WP1 System Design Analysis
 by Florida International
 University Prof. Satheesh
 Venkatakrishnan, Prof Raj
 Pulugurtha, Prof. John Volakis
- Overview of System Design Hardware for mmWave Architecture
- Beamforming Architectures
- Package Integration Trends and Features

' '	Introduction	
	Project Goals and Objectives	
	WP1 Technology and Market Updates	6
	Overview of System Design Analysis for mmWave Hardware	
	Beamforming Transceiver Architectures	
	Hybrid Beamforming	
	Advantages of Hybrid Beamforming	
	Challenges in Hybrid Beamforming	
	Wideband Beamforming	12
	Spatial-Wideband Effect	
	Frequency-Wideband Effect	
	Frequency-Wideband Effect	
	TTD ArchitecturesIRS (RIS)-Assisted Joint Beamforming	
	Summary	
	Passive Component Integration	16
	Spectrally Efficient In-band Full-Duplex Architectures	20
	Toward Next-Generation Wireless Communication — Simultaneous Transmit and Receive	
	(STAR) Radio Architecture	20
	Physical Layer Security by Adding Noise to the Wireless Channel [55, 56]	
	STAR Radio Architecture	
	SIC Techniques	
	SIC in Propagation DomainSIC through Feed Network	
	SIC in Analog Domain	
	SIC in Digital Domain	26
	STAR Demonstration	27
	High-gain mmWave Antenna Arrays	28
	FSS and Reconfigurability	31
	T@@absility with Active Components	31

Project Status - WP1

- WP1 System Design Analysis by Florida International University
- Overview of System Design Hardware for mmWave Architecture
- Beamforming Architectures
- Package Integration Trends and Features


Tunability with Substrate Properties	3
Resistive FSS	3
Antenna-Integrated mmWave Packages	3
Low-loss Through-Glass Via (TGV) Enabled Double-side Component Integration	3
mmWave Imaging Sensors	3
Summary	4
Team Members and Contributors	4
Contributors	4
MAESTRO Team Members	4
Acronyms & Abbreviations	4
References	4
Acknowledgements	5

Tables

Table 1. Advantages and Limitations of Different Beamforming Architectures	13
Table 2. Characterization of Wireless Communication Frequency Bands	15
Table 3. Heterogenous 3D Package Integration	33
Table 4. Comparison of Filter Realization Platforms	37
Table 5. Comparison of Microwave Imaging Techniques	39

Research Areas in 5G, 6G, and Beyond

New Market Demands

Amazingly Fast

Great Service in a crowd

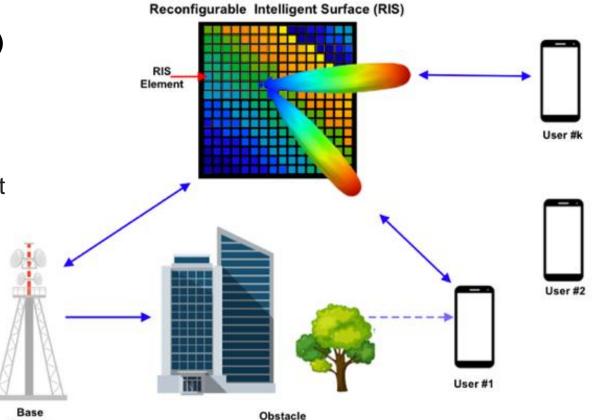
Super Real-time & reliable communications

Ubiquitous "things" Communicating

Areas of Research:

- MIMO beamforming architectures
- Advanced techniques to address spectrum coexistence and improve spectral efficiency and interference mitigation
- 3) Ultra-Wideband (UWB) systems
- 4) RF front ends: frequency agile, very small size, weight area, and power efficient (SWAP)
- 5) SMART Antennas
- 6) Millimeter-wave systems
- 7) RF-digital Transceivers
- Integrating Machine Learning and Artificial Intelligence in RF design
- Communication in contested environment

Reconfigurable land ligant Surfaces – Assisted Joint Beamforming


Small wavelengths at 5G/6G mm-Wave frequencies are subject to path losses and multipath scattering leading to beam blockage

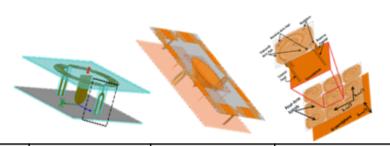
Reconfigurable Intelligent Surfaces (RIS)

supersede relay performance using large apertures with simple circuitry.

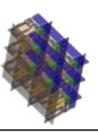
✓ Spectrally more efficient

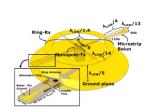
 RIS reduce hardware complexity.

Alternative Technology: Relays


- A dedicated power source per relay
- Reception and retransmission circuitry
- Signal processing complexities.

Goal: Beamforming and adaptive nulling using RIS via a very simple circuitry (in terms of SWAP-C)





Comparison of High Isolation Antennas

Year		2014/2018	2015	2017	2018	2019	2021
Min Isolation		65 dB (sim)	37 dB (meas)	28 dB (meas)	35 dB (meas)	35 dB (sim)	50 dB (meas)
Frequency		1.6-2.7 GHz	0.8-2.7 GHz	2-5 GHz	1.6-3.3 GHz	2-18 GHz	1.6–3.2 GHz
Bandwidth		1.05 GHz (1.6:1)	1.9 GHz (3.3:1)	3 GHz (2.5:1)	1.7 GHz (2:1)	16 GHz (9:1)	1.6 GHz (2:1)
Tx/Rx Pattern		Omni	Omni	Directional	Directional	Directional	Omni
Patterns Similar		No	No	Yes	Yes	Yes	No
Polarization		H-pol V-pol	H-pol V-pol	LHCP RHCP	RHCP LHCP	Dual linear	Dual
Scanning Tx Rx		No No	No No	Yes Yes	Yes Yes	Yes Yes	No No

WP1: System Design Analysis: Summary and Recommendations

Technology Enablers and Recommendations

- All players involved agree on the following Spectrum allocation:
 - New mid-spectrum at **7–20 GHz** for urban capacity
 - New low spectrum/LTE at 470–694 MHz for extreme coverage
 - New THz spectrum beyond **90 GHz** for the highest peak data(100Gbps) rates and sensing (proposed)
- mmWave MIMO with beam-forming (at base stations) to play a critical role toward 6G
- RIS critical for the urban environment
- In-band full-duplex is an enabling technology that will play a key role in building spectral coexistence within 6G.

ITU June Meeting on 6G Highlights and Key Points

- Efforts ongoing to understand 6G demands and requirements
- Expected speeds at Tbytes vs Gbyes.
- Insights into the 6G enabling technology requirements are still being hammered out.
- Japan: 600,000 stations to increase by 500x for 6G
- Countries including China, South Korea, and Japan, or regions such as North America and Europe have launched their own research groups.

Project Status - WP1

- WP1 Identification of Next-Generation Dielectric
 Materials and Testing Needs
 by Georgia Institute of Technology - Prof David Citrin
- Looking ahead to the next 10-15 years
- Materials options for packaging that are low-loss ($\tan\delta < 0.02$) above ~300 GHz
- Dielectric characterization above ~300 GHz

ABSTRACT	2
Tables	4
Figures	4
Introduction	
Project Goals and Objectives	
WP1 Technology and Market Updates	€
Background — Next-Generation Dielectric Materials and Testing Needs	7
Scope	8
Physical Considerations	11
Background	11
Device Materials	16
Substrate Materials	18
Ceramics	
Glasses and Fused Silica	
Polymers	
Prepregs, Stackups, Composites	22
Testing	25
Introduction	
Microwave Techniques	
THz Techniques	
Conclusions/Key Findings	30
Recommendations	31
Materials	31
Testing	31
000171 Appendix: Tables of Dielectric Properties of Materials	33

Low-loss materials for terahertz packaging

- Semiconductors: (Si, Ge, III-V, SiO₂, sapphire) High-resistivity, high-purity materials can have <u>very low loss</u> below the *reststrahlen* band. E.g., Si 1 THz, $\varepsilon' \sim 11.7$ and $\tan \delta \sim 0.00001$. But losses mount quickly as carriers are introduced.
- Ceramics: Crystalline and amorphous. E.g., Al₂O₃ ceramic, Al₂O₃ crystal, AlN ceramic, Si₃N₄ ceramic, Dupont 9K7, and Ferro A6M have tan δ<0.02 at 1 THz.
- Glasses: Ultrasmooth glasses with through-glass vias are of interest. Some glasses may be low-loss at 1 THz.
- Fused Silica: Mixed reports concerning low-loss at 1 THz.
- Polymers: Low-loss at 1 THz: Kapton, Cirlex polyimides, PTFE, HDPE, PS, COP, polynorbornene, polypropylene, PP, SU8, polycarbonate, LCP, and PMMA, the last three borderline.
- Prepregs, Stackups, Composites: Many choices, limited data at 1 THz.

Project Plans - WP2 (Roadmap Development)

- Proposed Chapters
 - Materials development
 - Materials Characterization
 - Electrical test
- Each Chapter has "small" working groups
- Materials Development TWG
 - Working document; ~70% completed
 - Multiple SME contributors; coalescing information together and pulling into cohesive flow is next step
- Materials Characterization TWG- background work and team from earlier iNEMI project
 - Complete: To be issued in March
- Electrical Test
 - Starting now

Project Plans Pr

Table 5G-3 Materials Characterization Needs, Gaps, and Today's Technology Status with Respect to Current and Future Needs

	ROADMAP TIMEFRAME								
TECHNOLOGY ISSUE	TODAY (2023)	3 YEARS (2026)	5 YEARS (2028)	10 YEARS (2033)					
	Frequency Range= 28-110 GHz	Frequency Range= 110-170 GHz (D-Band)	Frequency Range= 220-350 GHz (G Band)	Frequency Range= >500 GHz					
CHARACTERIZA	ATION FREQUENCY RANGE								
NEED	Tools needed at 5G frequencies (28-39 GHz)	Tools needed at D-band (110-170 GHz)	Tools needed G-band (220-350 GHz)	Tools needed for >500 GHz					
CURRENT TECHNOLOGY STATUS	Solutions deployed or known	Solutions need optimization	Solutions not known						
GAP	(NO GAP?)	Few tool options	Robustness and availability						
CHALLENGE	Limited tool availability for high frequencies	Supporting equipment is expensive (i.e., 100 GHz VNA)	Expensive supporting equipment						
CHALLENGE	High frequencies place burden on mechanical precision of equipment	on Methods still in academic space							
CHALLENGE	High equipment cost		000174						

In-table color + label key	Description of Technology Status
Solutions not known	Solutions not known at this time
Solutions need optimization	Current solutions need optimization
Solutions deployed or known	Solutions deployed or known today
Not determined	TBD

Project Plans Pr

		EXPECTED TRL LEVEL			
TECHNOLOGY ISSUE	POTENTIAL SOLUTIONS	TODAY (2023)	3 YEARS (2026)	5 YEARS (2028)	10 YEARS (2033)
ANISOTROPIC MATERIAL	Develop new and disruptive methods for material characterization	3	4	5	9
CHARACTERIZATION	Converge on common sample geometry	3	5	7	9
	"Cherry pick" samples	9	9	9	9
SAMPLE THICKNESS VARIATION	Use of mechanical methods to modify existing samples to improve thickness uniformity	4	4	4	4
	Develop new methods with less sensitivity to thickness variation	1	2	3	5

Color and Range of Technology Readiness Levels (TRL)	Description
TRL: 1 to 4	Levels involving research
TRL: 5 to 7	Levels involving development
TRL: 8 to 9	Levels involving deployment

Project Plans - WP3 (Implementation Strategy)

- Started Early due to the runway needed and the importance of forming partnerships and collaboration
- Currently working with ASIC coalition (<u>www.asicoalition.org</u>) a precompetitive group of >100 entities (public, private companies, Universities etc
- iNEMI leading the advanced SIP group and is putting together a proposal for a RF-SIP "demonstrator cluster" to address the majority of the challenges being identified in this roadmap
 - Team members: Georgia Tech, NGC, IBM, IPC, RPI, AMAT, Western Digital, Nantero, NEPES, Universal Instruments, ASPDL, UVM, Showa-Denko, 3DGS

Project Plans - WP4 (Governance and Communications)

- Teams site set up all communications and collaborations on-line as much as possible
- TWG meetings focused on specific roadmap chapters
- Monthly meetings
- Additional roadmap/workshops planned
 - Workshop at International Microwave week, San Diego, CA(Jun 11-16, 2023)
 - Session IWWE6 on June 14, 2023: https://ims-ieee.org/exhibition/microapps/industry-workshops?type=IWWE6&date=2023-06-14
- More to come...Stay Tuned

Maestro Next Steps

Mar 2023: Publish and propagate contents of Roadmap

Chapter "Materials Characterization"

April 2023: Complete NIST Semi-Annual Report #2

May 2023: Complete Roadmap Materials Chapter

• 3Q 2023: Complete Implementation Strategy

Acknowledgement

MAESTRO Team
NIST Office of Advanced Manufacturing

https://www.inemi.org/maestro

