Thin and Ultra-thin sidewall protected P-WLCSP

March 14, 2023

Doug Hackler
American Semiconductor

Ed Prack PhD
MASIP LLC
• Defining “Advanced Packaging” (AP)
 ‣ Advanced packaging is the aggregation and interconnection of components before traditional integrated circuit packaging – Wikipedia
 ‣ Advanced packaging is a general grouping of a variety of distinct techniques, including 2.5D, 3D-IC, fan-out wafer-level packaging and system-in-package – Semiengineering
 ‣ These definitions fail in defining “advanced packaging” as it relates to package manufacturing

• FEOL Example: Next Generation multi-core SOC vs Next Advanced Process Node
 ‣ Scaling from 28nm to 5nm is an example of advanced manufacturing
 ‣ Designing improved multi-core ICs is not, but may be realized in an advanced manufacturing process
 ‣ Advanced manufacturing is not limited by new designs and can provide improvements independent of product designs

• Advanced Packaging is correctly defined as: The leading edge of packaging technology
 ‣ AP can be applied to benefit old and new technology nodes, designs, chiplets, passives, etc.
 ‣ AP is not limited to advanced technology nodes, multi-chip assemblies, AI, 6G, etc.
Advanced Packaging is fundamental to reestablishing U.S. semiconductor manufacturing

• Applying advanced packaging capability to WLCSP for FI is one example
• Die sidewall protection has become important for high IO die reliability
• Advanced Packaging in the form of non-WL CSP FO processes such as M-Series and eWLB have been applied to provide side protection (6S) for FI
• Non-WL CSP includes die reconstitution, expensive tapes, molding operations, and resolves the reliability issues for FI, but the added cost and process complexity was and is far from optimal
• Advance Packaging for P-WLCSP can resolve the issues associated with using FO processing to achieve FI reliability AND enable commercial on-shore packaging by providing cost advantages
6-side protection: P-WLCSP

- “Protected WLCSP” (P-WLCSP) resolves Cost and Complexity of non-WL for FI
 - 6-side protection without the cost and complexity on non-WL FO type processes
 - P-WLCSP does not require pre-package die thinning, dicing or reconstitution
 - P-WLCSP Substantially reduce the equipment and process steps required for processing
 - Material reductions with the elimination of dicing tape and molding materials

- Example: SoP-TM™ 6-side protected P-WLCSP introduced at IMAPS 2021
 - Full protection, without the cost/complexity of non-WL FO processes used for protected CSP FI
 - 300mm process utilizes polyimide for encasement
 - The process includes maskless processing and high temperature temporary bonding
 - Adaptive processing expands the selection of PIs available for stress balancing
 - Final singulation (dicing) speed enhancement due to P-WLCSP PI scribe streets

- Enabling ultra-thin devices
 - Reduced die thickness improves capability for through silicon via (TSV) size and pitch
 - Enables high-temperature backside RDL (B-RDL) and heat sinks
 - CMOS silicon thicknesses is typically 10-15um, but can be adjusted as needed
• Non-WL CSP vs P-WLCSP SoP illustrates advanced packaging benefits for FI

- P-WLCSP provides cost reduction and performance improvement in CSP FI applications
- 50% fewer steps → 50% less capital, or 2X capacity increased for existing facilities
- 50% Less labor cost → Cycle time 50% less, improves cash flow
- 30-50% Less material cost

SoP-TM – Enables On-Shore Manufacturing
IMAPS 2021 - 1st Silicon Results announced

SoP-TM high efficiency, low-cost, P-WLCSP with 6-side protection utilizes polyimide for encasement. The process includes maskless processing, high temperature temporary bonding, final singulation with extremely fast laser dicing.
DPC2022 - SoP-TM development update
Current progress for SoP-TM high efficiency, low-cost, P-WLCSP with 6-side protection
Improved sidewall formation and demonstration of laser singulation

Trench 45um
Top PI (PSB) 10um
Silicon 10um
Bottom PI (PSB) 4um
Sidewall PI (PSB) ~7um
Adaptive Processing
• Adaptive processing with direct write
• Maskless processing during RDL steps such as for via.

High Speed SoP Dicing
• Multi-pass recipe proves 200 mm/s effective cut speed
• Low power of 1.25 Watts.
• SoP polyimide encasement cuts cleanly without scorching
• Smooth cut line without need of protective coatings/cleans

Throughput (pre-production tool)
• Demonstrated at 4-5 WPH for 2 mm die on a 200 mm wafer.
SoP-TM Sidewall

- 10-100um Silicon process
- 10um Standard Si Thickness
- Sidewall surface optimized for die strength
- Plasma etch (similar to plasma dicing)
- Die Strength Optimization
Static RoC Testing (TEST003)

- Manual conformance to RoC mandrel

<table>
<thead>
<tr>
<th>Process</th>
<th>DBG</th>
<th>P-WL CSP FeX-C</th>
<th>P-WLCSP SoP-TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Bare Die</td>
<td>IDM-A</td>
<td>IDM-B</td>
</tr>
<tr>
<td>Sidewall</td>
<td>Blade</td>
<td>Blade</td>
<td>Blade</td>
</tr>
<tr>
<td>Dimensions</td>
<td>~2x2</td>
<td>~2.5x2.5</td>
<td>~3.8x3.8</td>
</tr>
<tr>
<td>Si Thickness</td>
<td>100um</td>
<td>15um</td>
<td>15um</td>
</tr>
<tr>
<td>RoC</td>
<td>Bend</td>
<td>Orientation</td>
<td></td>
</tr>
<tr>
<td>20mm</td>
<td>Perp</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>15mm</td>
<td>Perp</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td>12mm</td>
<td>Perp</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td>10mm</td>
<td>Perp</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td>8mm</td>
<td>Perp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7mm</td>
<td>Perp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6mm</td>
<td>Perp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5mm</td>
<td>Perp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Orth</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
• Dynamic Bend Test (Die Strength)
• ASI TEST005 derived from ASTM D522-93a
 ‣ Chips mounted on flex coupons of PET or PI
 ‣ Robotic cycling at specific (RoC) for bend, concave and convex
• Developing test equipment and methods
• Equipment development
 ‣ Universal sample mounting
 ‣ Method for electrical connection (in-situ bias device operation)
 ‣ Mechanical design to isolate targeted axis of motion
 ‣ Compatible mini-environments for temp, humidity, etc.
• Method development
 ‣ Flexure direction and amplitude
 ‣ Test coupon design
 ‣ Targeted cycle counts
 ‣ Acceptable cycle rates
• ASI/Bayflex collaboration with SEMI to create NIST standards
DPC2023 – Process Release and Test Chips
SoP-TM has been released for early industry adoption. The high-efficiency P-WLCSP process for protected FI includes ultra-thin package capability and is supported with Test Chips for assembly verification and development.
Summary:
• SoP-TM is the “industry 1st”:
 ‣ Wafer level sidewall protected CSP process
 ‣ Fully dry via opening process with no wet develop or wet pad clean, Adaptive Processing
 ‣ CSP process with imaged patterns not limited to photo-definable materials
 ‣ High reliability ENIG bump structure (bump over PI)

Next Steps
• Accelerated Stress Testing (HAST)
• Dynamic Chip-on-flex Testing (TEST005)
• Capacity Expansion
American Semiconductor - Boise, ID

Flexible Hybrid Lab

Class 100 Cleanroom

Packaging, Assembly, Test and Related Services

MASIP LLC- Phoenix, AZ

MASIP LLC holistic approaches to products/markets
- Market and materials/process trends (IC pkg focus)
- Manufacturing optimization (FA and rel assessments)
- Material and process development & implementation
- Specific application materials and process assessment

Wide experience:
- Electronics-FAB, packaging and assembly
 - early publications and patents for FI & FO (RCP)
- Material and development
 - Implemented 1st 2 PSPSI materials at Motorola
 - IP on materials/processes for WSS/flux/AM
- Material/interface experience and Rel modeling
 - Solving failure mechanisms (surface/interfaces)
 - Applying material principles to key areas
 - Reliability modeling, Processing, Materials
- Optimization of plastic package for high reliability
 - Materials, processes, interfaces
Thank You

SoP packaging supported in part through Joint Development with HD MicroSystems

Special thanks to Plasma-Therm for their support of special processing requirements