

Laser Processing of Polyimide and Molybdenum Substrates for Extreme Environment Electronics

Presented By: Sherman Peek

Advisor: Dr. Michael Hamilton

Outline

- 1. Introduction
- 2. Fabrication
- 3. Cryogenic Evaluation
- 4. Conclusion and Future Work
- 5. References
- 6. Acknowledgement

Introduction

Introduction – Extreme Environment Packaging

- Advances in extreme environment packaging is essential for many applications.
 - Space technology.
 - Cryogenic/quantum.
 - Automotive.

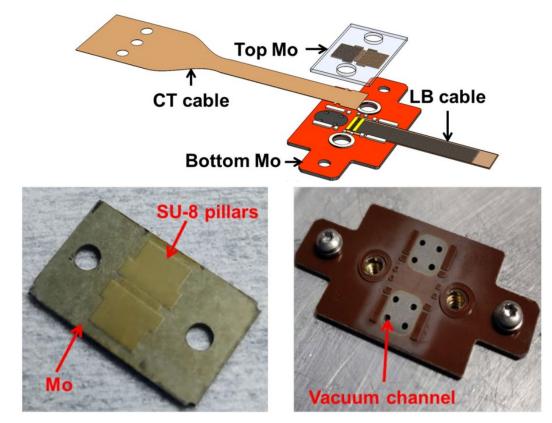
 This work explores a packaging approach for cryogenic temperatures, but may also be viable for various extreme environments.

Previously designed, fabricated, and tested flexible cryogenic interconnects [1].

Introduction – Molybdenum

- Robust material with comparable specs to Si.
- Mo compared to Si
 - Pros:
 - Higher tensile strength.
 - Comparable thermal conductivity.
 - Cons:
 - Electrically conductive.
 - Superconducting.
 - Slightly higher CTE.
 - More dense.

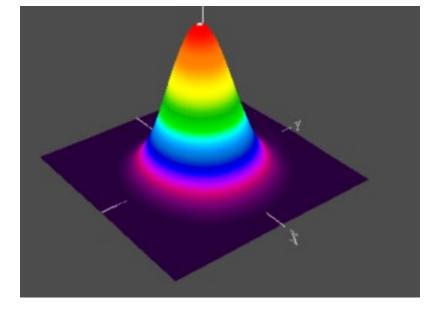
Material Property	Mo	Si
Density	$10.22~\mathrm{g/cm^3}$	2.33 g/cm^3
Melting Point	$2617^{\circ}\mathrm{C}$	1415°C
Hardness	1.4 GPa	8.3 GPa
Young's Modulus	330 GPa	130 GPa
Thermal Conductivity	138 W/(mK)	$150 \mathrm{W/(mK)}$
Coefficient of Thermal Expansion	5.4 ppm/K	2.6 ppm/K
Tensile Strength	324 MPa	165 MPa


Material properties of Mo and Si at room temperature [2-4].

^[3] Martienssen, W, and Hans Warlimont. Springer Handbook of Condensed Matter and Materials Data. Heidelberg: Springer, 2005. Print.

Introduction – Molybdenum in Cryogenic Applications

- Face-to-face connector scheme.
 - Mo substrates used as passive mechanical structures.
 - SU-8 and polyimide on Mo.
 - Mechanical drilling for holes.
 - Costly without coolants from tool wear.
 - · Time-consuming.
 - Initial process development for laser cutting Mo performed for this application.

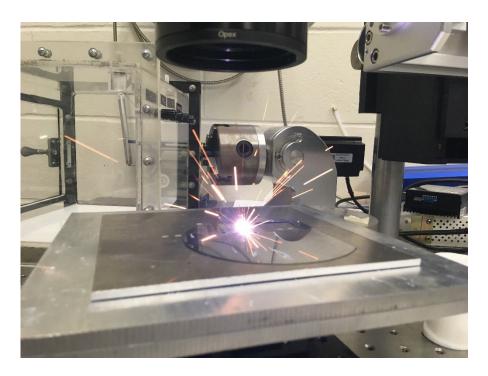


Cryogenic application using Mo as a cable-to-cable connector scheme [5].

Introduction – Laser Processing

- Photoablation [6]:
 - Evaporation, sublimation, or plasma formation.
 - Dependent on laser flux.
 - Managing thermal damage and influences.
 - Shorter pulse duration = less thermal influence.
- Wavelength contributions:
 - Spot size
 - Energy/fluence
 - Absorption in material
 - Penetration depth

Beam profile prior to objective lens.

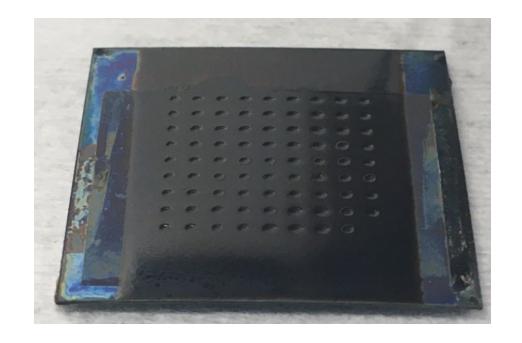

Fabrication

Fabrication – Overview

- Materials:
 - 300 µm Mo wafer
 - HD-4100 series polyimide
- Equipment:
 - 5 ns pulse fiber laser w/ galvoscanning motion.
 - Mo laser processing.
 - 420 fs laser w/ x, y, z translation stage.
 - Spectra-Physics® Spirit®
 - PI laser processing.
 - Abrasive blasting cabinet.
 - · Silicon carbide media.

Laser environment for Mo processing.

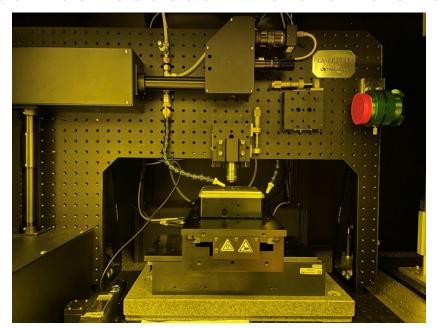
Fabrication Step 1 – Mo Laser Drilling

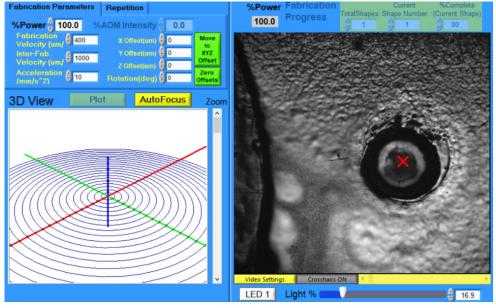

Mo

					Case A			Case B			Case C	
Parameter	A	В	С									
Lens Objective Power Wavelength	F-theta Lens 130 W 1060 nm	F-theta Lens 130 W 1060 nm	F-theta Lens 130 W 1060 nm		@	(A)	•)		•	ف		
Pulse Duration Repetition Rate Repetitions	5 ns 130 kHz 20	5 ns 130 kHz 20	5 ns 130 kHz 20	(6)	()			•	6.		
Scan Speed Line Fill Pitch	600 mm/sec 80 μm	600 mm/sec 40 μm	1200 mm/sec 20 μm	RAITH	Б ДДДД мау = 26 X — ЕНТ + 20,00 KF — Sgrad A = SE	27 Gar Vacuum v 4 50e 000 mbar 1- 30 00 jm System Vacuum v 2 00e 005 mba	RAITH	Mag = 24 X BHT = 20,00 KV Signal A	SE2: Gun Viscoum = 4 00+ 000 mise	RAITH	g = 26 X	Gun Vacuum = 3.51e 009 mbar
					(a)			(b)			(c)	
								z	[m] 200 100 0 100 2	200 300 400 X[m]	500 600 700	Y[m]
10000			7		RAITH	Mag = 24 X EXT = 100 pm WD = 1	30 00 kV Signal A + SE? Gu (6 7 mm Aperture Sze + 30 00 µm Syr	1 Yasuum = 2 564-009 mbar allem Vasuum = 1 304-005 mba		(e)		

Fabrication Step 2 – Polyimide Processing

Mo

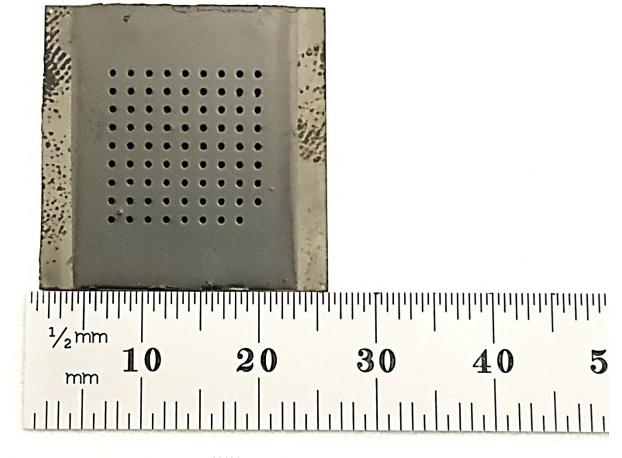

- Spin coat and cure polyimide on both sides of molybdenum.
 - Process per manufacturer data sheet.
- Vacuum used after spin coating to facilitate hole fills.
- Four separate curing cycles performed, two on each face of the Mo sample.



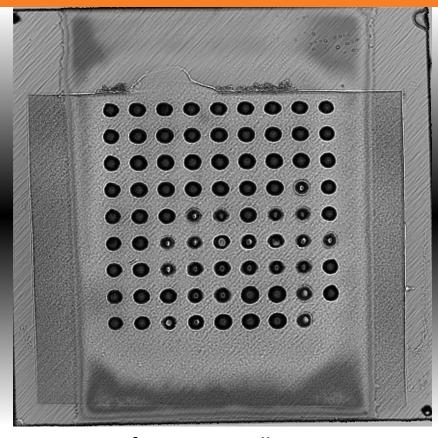
Fabrication Step 3 – Polyimide Processing

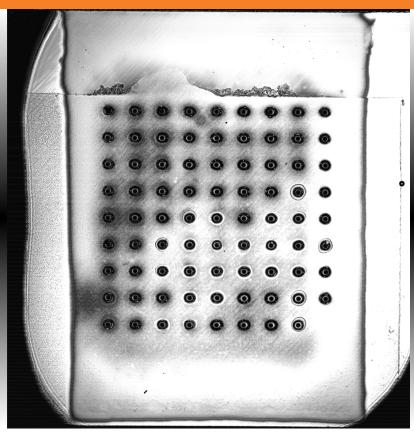
- Newport µFab system
 - X, Y, & Z translation stage
- Drills designed with concentric circles.
 - Can be reduced in future iterations.

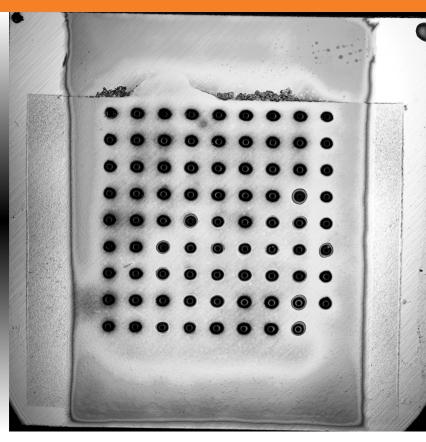
Parameter	Value
Lens Objective	4x/NA: 0.1
Max Power (Prior To Lens)	970 mW
Wavelength	520 nm
Pulse Duration	420 fs
Repetition Rate	200 kHz
Pulse Picker Divider	100
Repetitions Per Via	10
Scan Speed	0.4 mm/sec
Concentric Circle Spacing	10 μm


Fabrication – After Processing

Cryogenic Evaluation


Cryogenic Evaluation


- Cryogenic thermal cycling:
 - Direct liquid nitrogen submersion.
 - 77 K
 - 5x thermal cycles:
 - RT to 77 K return to RT
- Evaluation performed with confocal scanning acoustic microscopy before and after thermal cycling.

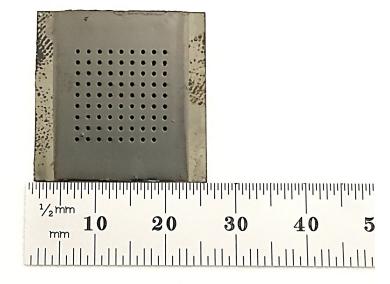


Cryogenic Evaluation – CSAM Imaging

Before Laser Drilling PI

After Laser Drilling PI

After Thermal Cycling


Minimal differences between before and after thermal cycling.

Conclusion and Future Work

Conclusion and Future Work

- Work presented is encouraging for future cryogenic interposers with materials more robust under a tensile load than Si.
 - Molybdenum is used for a variety of applications, transfer of processes is viable.
- Next milestones:
 - Full electrical isolation.
 - Improve insulated coating of holes.
 - Minimize warping.
 - Electroplating and scaling.

References

- [1] Peek, Sherman et al. Fabrication and Flip-Chip Assembly Processes For Cryogenic Applications Using Indium-Indium and SAC-Indium Bump Connections on Flexible Interconnects. (2021).
- [2] Gökçe, H., Çiftçi, İ. and Demir, H. Cutting parameter optimization in shoulder milling of commercially pure molybdenum. J Braz. Soc. Mech. Sci. Eng. 40, 360 (2018). https://doi.org/10.1007/s40430-018-1280-8
- [3] Martienssen, W, and Hans Warlimont. Springer Handbook of Condensed Matter and Materials Data. Heidelberg: Springer. (2005). Print.
- [4] Venkatachalam, Sivaramakrishnan. Predictive modeling for ductile machining of brittle materials. Georgia Institute of Technology. (2007).
- [5] Yelamanchili, B. et al. Face-to-Face Cable Interconnect Scheme for Thin Flexible Superconducting Stripline Cables. IEEE Transactions on Applied Superconductivity, vol. 32, no. 4, pp. 1-5. (June 2022). doi: 10.1109/TASC.2022.3149729
- [6] Chichkov, B. et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A: Materials Science & Processing, vol. 63, no. 2, pp. 109–115, Aug. (1996).

Acknowledgement

George Hughes, the motivator for all laser processing completed. Performed polyimide spin coating and curing.

Dr. Michael Hamilton, Dr. Mark Adams, and Dr. Masoud Mahjouri-Samani for technical guidance.

Alabama Micro/Nano Science and Technology Center (AMNSTC) for providing access to fabrication and characterization facilities used in this work.

Questions

Sherman Peek

Email: sep0022@auburn.edu

Dr. Michael Hamilton

Email: mch0021@auburn.edu