

Zhang Hanwen Global Product Manager, Advanced Packaging Heraeus Electronics

18TH INTERNATIONAL CONFERENCE & EXHIBITION ON DEVICE PACKAGING
FOUNTAIN HILLS, AZ + WWW.DEVICEPACKAGING.ORG + MARCH 7-10, 2022

AGENDA

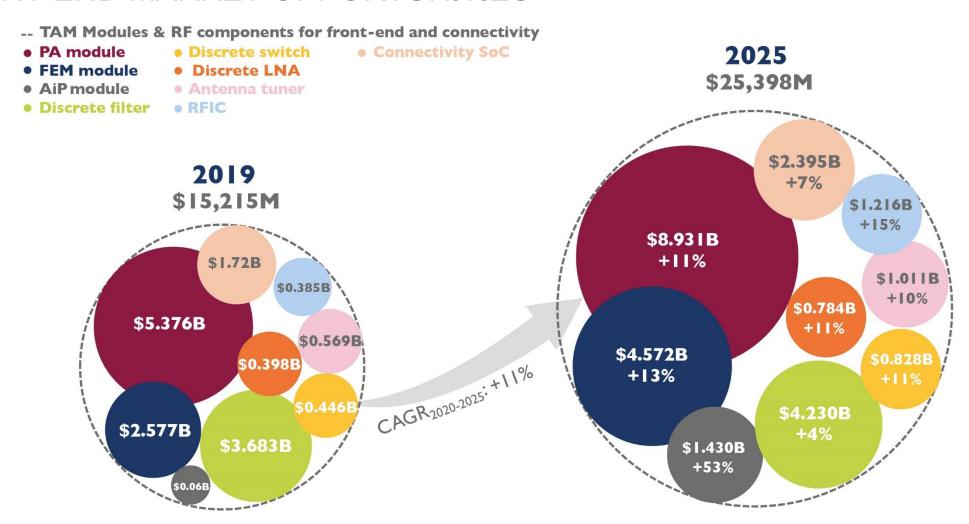
- IntroductionSystem In Package for 5G applicationsThermal Budget Challenge In Dual-sided SiPs

Low Temperature Solder Material

- Tin-bismuth-silver (Sn-Bi-Ag) low temperature alloy properties
- Solder bump microstructure and Intermetallic phase development with thermal aging
- Thermal cycling and mechanical drop tests

Targeting Ultra-fine Pitch ApplicationPaste formulation- powders and flux

AGENDA


- Introduction
 System In Package for 5G applications
 Thermal Budget Challenge In Dual-sided SiPs

Low Temperature Solder Material

- Tin-bismuth-silver (Sn-Bi-Ag) low temperature alloy properties
- Solder bump microstructure and Intermetallic phase development with thermal aging
- Thermal cycling and mechanical drop tests

Targeting Ultra-fine Pitch Application
 Paste formulation- powders and flux

RF FRONT-END MARKET OPPORTUNITIES

Source: Yole Developpement Sept 2020

SYSTEM-IN-PACKAGE (SIP) MODULES FOR 5G APPLICATIONS

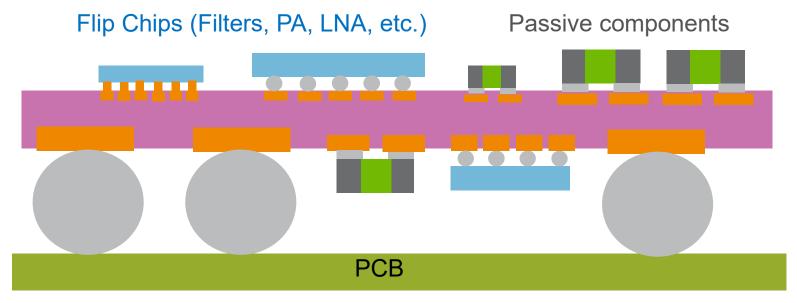
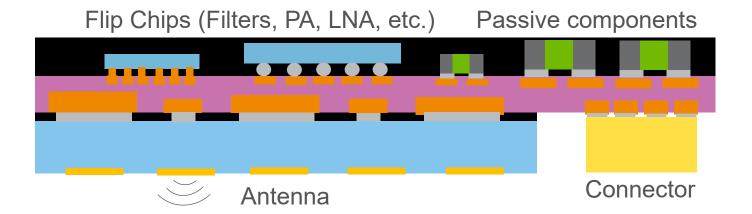
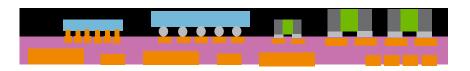
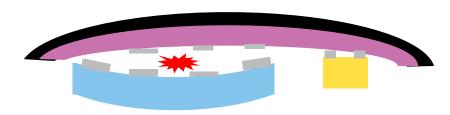



Illustration of RF Front-End SiP module


- System-in-Package technologies' flexibility enables heterogenous integration for functional performance and faster time-to-market
- SiP modules consist of flip chips (filters, PA, LNA, etc.) and passive components of various sizes
- SiP can be dual sided and subjected to multiple reflows

THERMAL BUDGET CHALLENGE IN DUAL-SIDED SIPS


A Case study of dual sided Antenna-in-package (AiP)

1st reflow (260°C for SAC305) and underfill/molding

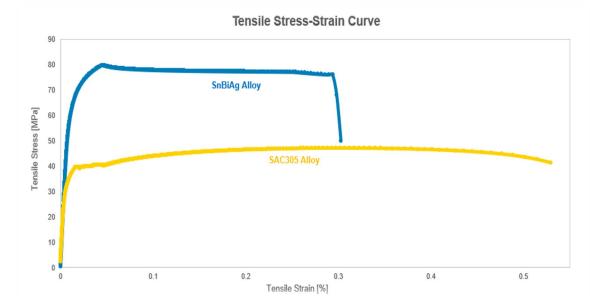
2nd reflow (260°C for SAC305)

Lower the thermal budget during 2nd reflow by using a low temperature solder material

AGENDA

- Introduction
 System In Package for 5G applications
 Thermal Budget Challenge In Dual-sided SiPs

Low Temperature Solder Material

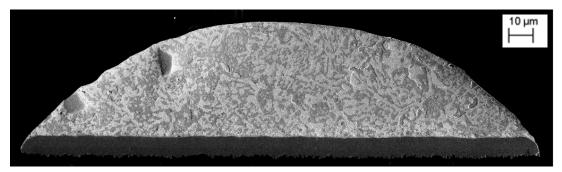

- Tin-bismuth-silver (Sn-Bi-Ag) low temperature alloy properties
- Solder bump microstructure and Intermetallic phase development with thermal aging
- Thermal cycling and mechanical drop tests

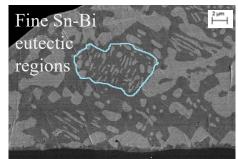
Targeting Ultra-fine Pitch Application

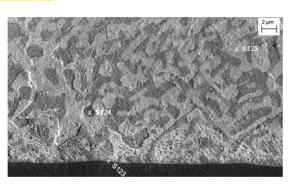
Paste formulation- powders and flux

SOLDER ALLOY PROPERTIES

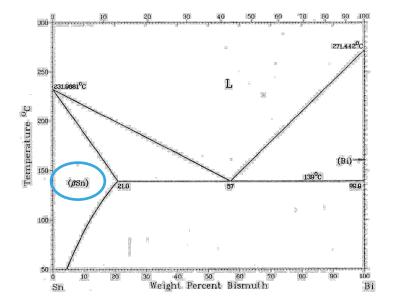
Solder Type	Melting Point, °C	Electrical Resistivity, μΩ.cm ASTM F84	Young's Modulus, GPa ASTM C597	0.2% Proof Stress, N/mm²	Tensile Strength, N/mm²	Elongation, % ASTM A370-17	Impact Energy, J ASTM E23
SAC305	223	10.9	45.6	35.8	46.6	44.6	69
Sn-Bi57-Ag1	138	34.8	41.5	63.0	78.0	22.8	0.88
Sn-Bi48-Ag _x	145	29.0	42.2	60.6	80.6	24.0	0.84

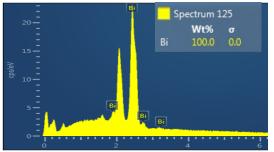


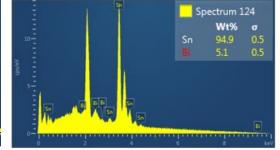

Bi-Sn alloys are known to be more brittle than SAC305

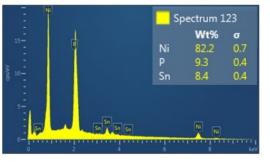


SN-57BI-1AG SOLDER BUMP MICROSTRUCTURE

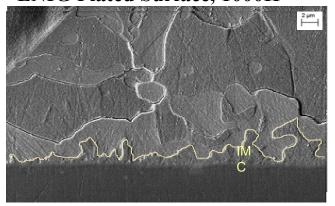

Solder bumps are formed with a Type 6 printing solder paste in a no clean chemistry

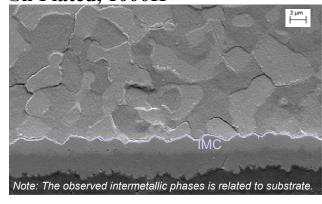




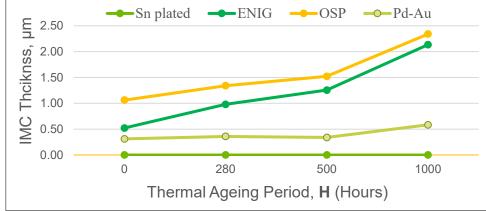

Sn-Bi57-Ag1 solder bump printed on ENIG plated surface (Au/Ni)

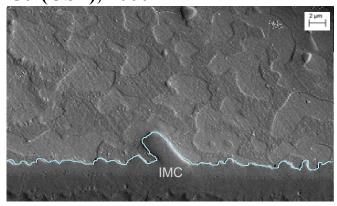
White (S125): pure bismuth phase, 100% Bi Grey (S124): primary tin phase (βSn), Sn-5wt%Bi S123: Intermetallic compound (IMC) with ENIG substrate

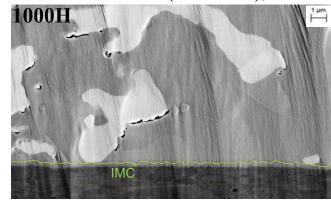




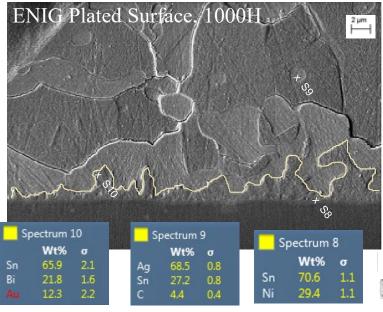
THERMAL AGING TEST AT 75°C- IMC GROWTH ON VARIOUS SUBSTRATES


ENIG Plated Surface, 1000H

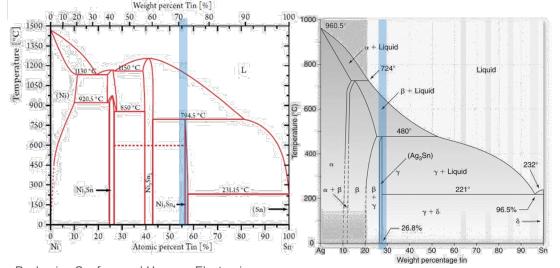

Sn Plated, 1000H


Growth of Intermetallics Interface with Sn-Bi57-Ag1

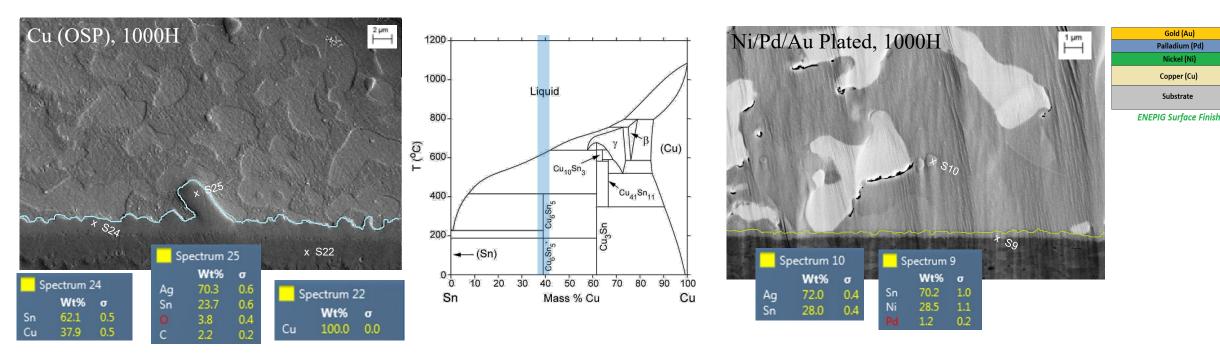
Cu (OSP), 1000H



Ni/Pd/Au Plated (ENEPIG),

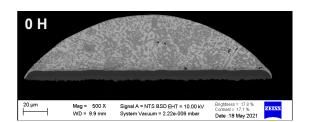

Growth of interface IMC layer thickness over thermal aging at 75°C is more obvious for Cu OSP and ENIG substrate surfaces.

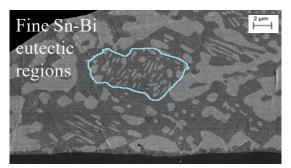

INTERFACE IMC ON ENIG SUBSTRATE SURFACE

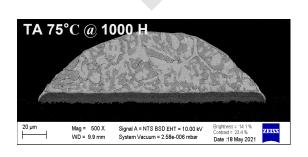

ENIG-SnBi solder interface

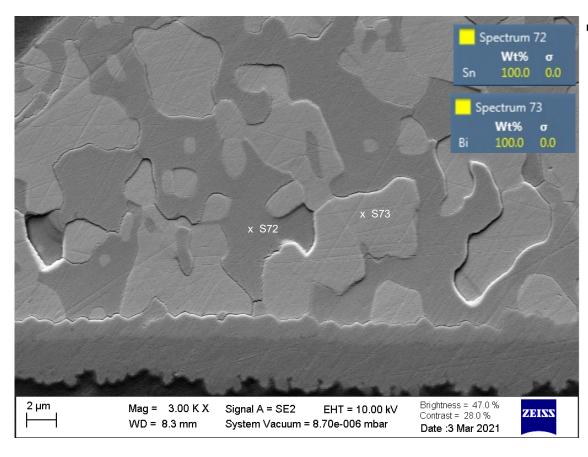
	Spots	Elements	SEM-EDX, Wt%	Reference- Phase Diagram	Molecular weight, g/mol	Mole fraction	Typical Intermetallics
Г	0	Ni	29.4	Ni ₃ Sn ₄	191.36	3	Ni Cn
	8	Sn	70.6	(Sn 70 – 75 wt%)	459.54	4	Ni ₃ Sn ₄
	9	Ag	68.5	Ag₃Sn	302.95	3	A.c. Cm
		Sn	27.2	(Sn 25-30 wt%)	120.41	1	Ag₃Sn
	10	Au	37.9	AuSn ₂	164.8	1	AC.
		Sn	62.1	(Sn 60-65 wt%)	270.02	2	AuSn ₂

INTERFACE IMC ON CU OSP & ENEPIG SUBSTRATE SURFACE

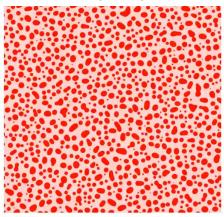

Cu OSP-SnBi solder interface

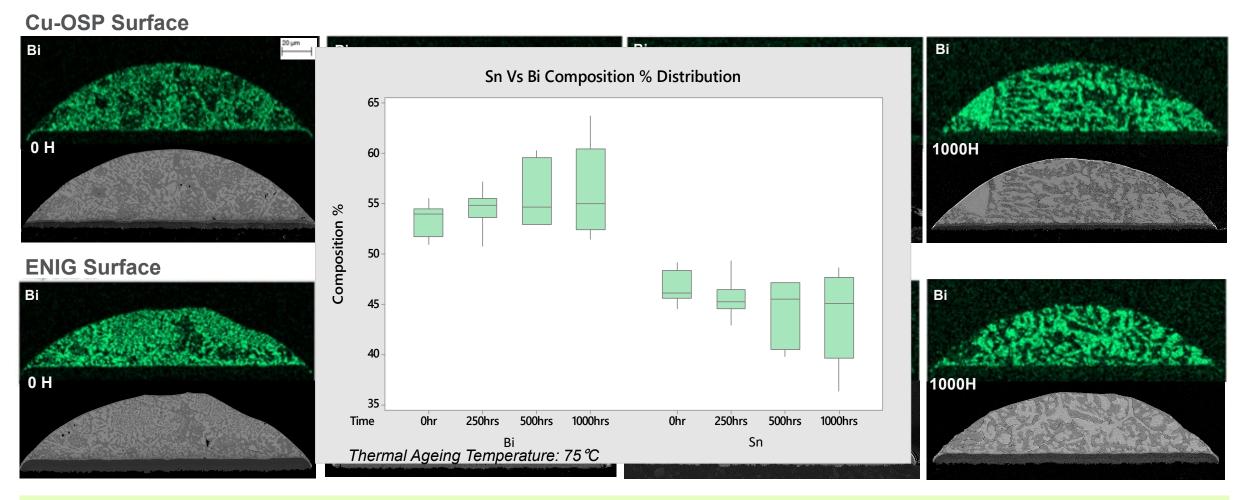

Spots	elements Wt% Ty		Typical Intermetallics	
24	Cu	37.9%	C., S.,	
	Sn	62.1%	Cu ₆ Sn ₅	
25	Ag	70.3%	A.c. Sn	
	Sn	23.7%	Ag₃Sn	


ENEPIG-SnBi solder interface

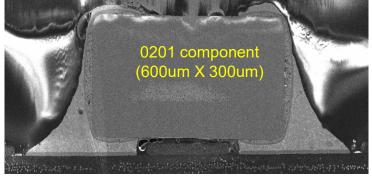

Spots	elements	Wt%	Typical Intermetallics	
0	Ni	28.5%	Ni Co	
9	Sn	70.2%	Ni ₃ Sn ₄	
10	Ag	72.0%	A = 5 =	
	Sn	28.0%	Ag ₃ Sn	

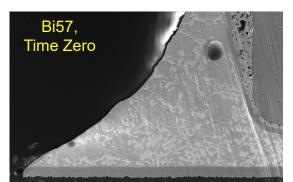
THERMAL AGEING (75°C)- SN-BI COARSENING (OSWALT-RIPENING)

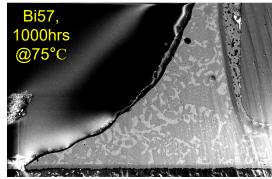


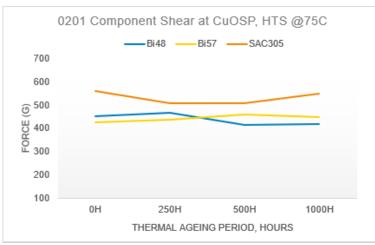

- Sn-Bi eutectic phases are evident:
 - > S73: pure bismuth phase (100% Bi)
 - S72: primary tin phase (100% (βSn))

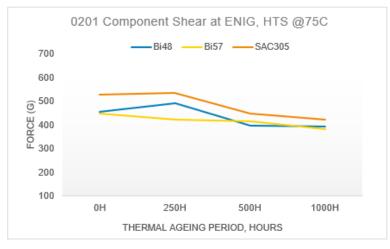
Oswalt Ripening Effect

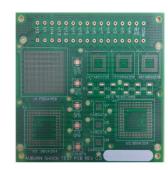

- Oswalt Ripening: Obvious coarsening of Bi and Sn phases noticed.
- Sn-Bi interface is stable without any significant changes in microstructure.


SEM / EDX ANALYSIS OF SN-BI COARSENING




Sn and Bi phases become coarser and more inhomogenously distributed over aging time


COMPONENT SHEAR STRENGTH WITH THERMAL AGING (75°C)

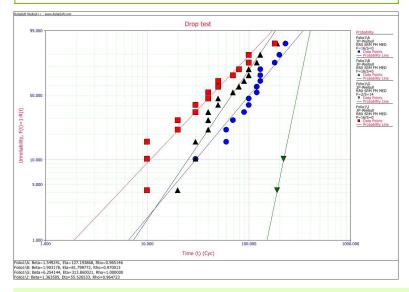


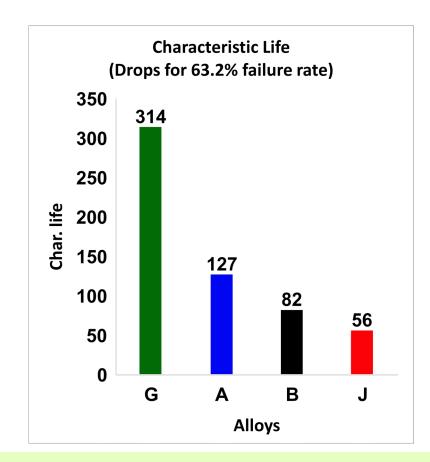
- Shear strength remains high without significant degradation over 1000Hr aging at 75°C
- Effect of interface IMC growth and Sn-Bi coarsening on shear strength is minimal

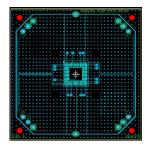
STUDY 1- THERMAL CYCLING TESTS

Low Temp. Solder Alloys				
Solder A	SnBi57Ag1			
Solder B	SnBi48Ag _x			
Solder G	SAC305			
Solder J	SnBi48Ag _x + dopants			

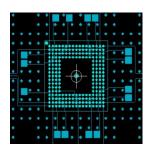
Conditions: Thermal cycling profile: -40/125C with 16.5 minutes ramps up and down (10°C per minute) and 15 minutes dwell time at 125°C and 10 minutes dwell time at -40°C. Recorded continuously the electrical connectivity of the solder joints. ENIG plated test boards


Thermal Cycling PCB

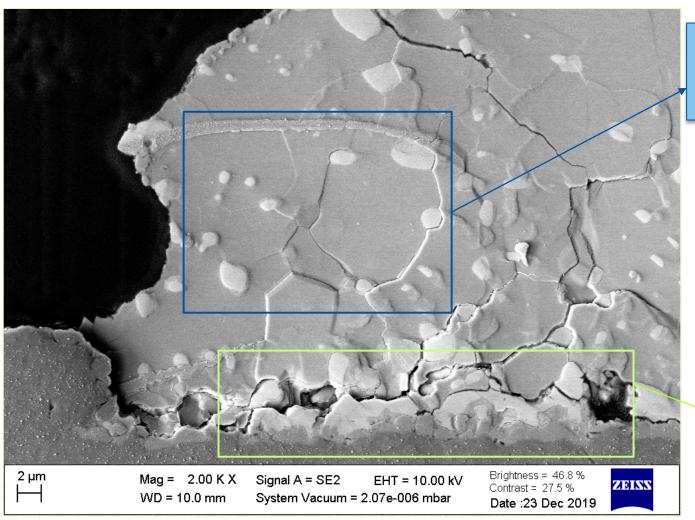

Paste	A (SnBi	i57Ag1)	E	3	G (SA	C305)	,	J
Component	CABGA208	SMR	CABGA208	SMR	CABGA208	SMR	CABGA208	SMR
Total Test Components	18	36	18	36	18	36	18	36
# of failed components until 1500 cycles	1	0	2	0	3	0	9	1
% failure until 1500 cycles	5.56%	0.00%	11.11%	0.00%	16.67%	0.00%	50.00%	16.67%
1st Failure	1240	0	275	0	1180	0	190	970


 Sn-Bi57-Ag1 showed comparable TCT performance to SAC305, and best among all low temperature solder pastes tested.

STUDY 2- MECHANICAL DROP TEST


Low Temp. Solder Alloys				
Solder A	SnBi57Ag1			
Solder B	SnBi48Ag _x			
Solder G	SAC305			
Solder J	SnBi48Ag _x + dopants			

PCB design top view

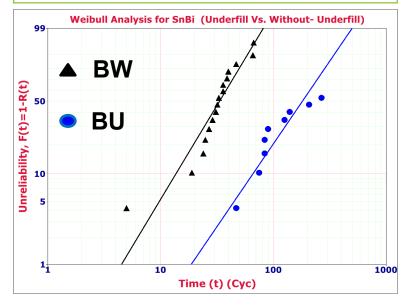

Component footprint with inspection pads

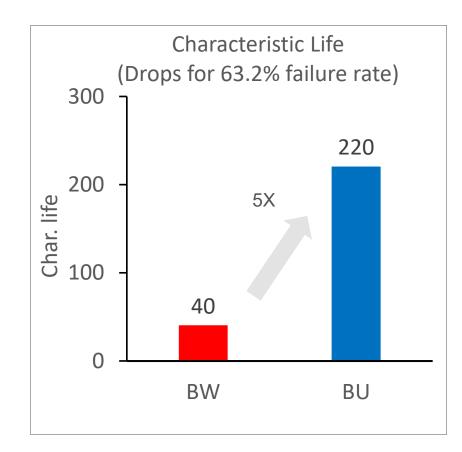
PCB are 76x76mm, 1.0mm total thickness, 6-layer board, 1/2 oz copper all layers, use IT180A for all layers, 3 mil line with 4 mil space, 4 tooling holes on OSP PCB surface finish. 15x15mm CTBGA208-SAC305 component per PCB. 16 boards per sample.

JESD22-B111 specifications to maximum peak acceleration of 1500g and half-sine shock pulse duration of 0.5 milliseconds.

Sn-Bi57-Ag1 (Solder A) showed drop characteristic life of >100 drops

MECHANICAL DROP TEST – CRACK ALONG BI PHASE




 Scattered fine bismuth phase prolong the crack propagation via Sn eutectic (grain) boundaries.

 Agglomerated large bismuth phase accelerated crack propagation via weak Sn-Bi eutectic interface.

STUDY 3- MECHANICAL DROP TEST WITH UNDERFILL

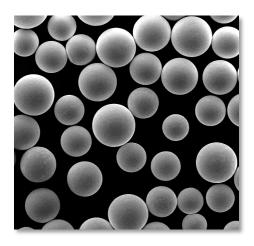
Low Temp. Solder Alloys				
AU	SAC305 with Underfill			
AW	SAC305 without Underfill			
BU	SnBi57Ag1 with Underfill			
BW	SnBi57Ag1 without Underfill			

- Deviation in drop test characteristic life as compared to Study 2 without underfill
- Further Investigations in progress on:
 - Substrate condition
 - Reflow profile control
 - Paste volume control
 - Flux formulation control

With underfill, Sn42-Bi57-Ag1 (BU) showed >5X increase in drop characteristic life
 Applicable for SiP modules with underfill and molding

AGENDA

- IntroductionSystem In Package for 5G applicationsThermal Budget Challenge In Dual-sided SiPs


Low Temperature Solder Material

- Tin-bismuth-silver (Sn-Bi-Ag) low temperature alloy properties
- Solder bump microstructure and Intermetallic phase development with thermal aging
- Thermal cycling and mechanical drop tests

Targeting Ultra-fine Pitch ApplicationPaste formulation- powders and flux

SOLDER PASTE FORMULATION FOR FINE-PITCH SIP APPLICATION

Fine-pitch Solder Paste Formulation:

- Type 6, 7, 8 and beyond
- Alloys: SAC305, SnBiAg
- Made with unique Welco[™] technology

Flux System

 Designed to work with fine pitch powders for optimal paste performance

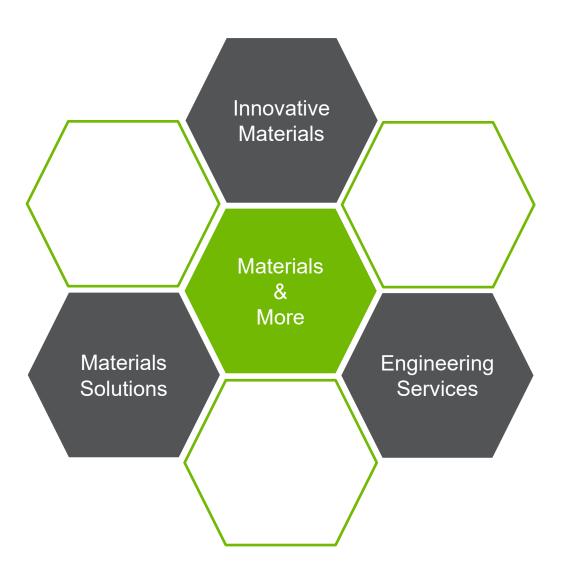
Solder Paste for SiP

- Consistent paste release at ultra-fine pitch printing
- Minimal voids & beading
- Long stencil life & staging

SUMMARY

- Low temperature solder paste material can effectively address thermal budget challenges in dual-sided SiPs for 5G applications (RFFE, AiP, etc.)
- Low temperature alloy Sn-Bi57-Ag1 demonstrated best reliability performance for thermal aging (75°C), thermal cycling and drop tests
- Key to have the right solder paste formulation for ultra-fine pitch SiP applications

AGENDA


- IntroductionSystem In Package for 5G applicationsThermal Budget Challenge In Dual-sided SiPs

Low Temperature Solder Material

- Tin-bismuth-silver (Sn-Bi-Ag) low temperature alloy properties
- Solder bump microstructure and Intermetallic phase development with thermal aging
- Thermal cycling and mechanical drop tests

Targeting Ultra-fine Pitch ApplicationPaste formulation- powders and flux

Thank you for your attention.
For more information, visit
Heraeus Electronics