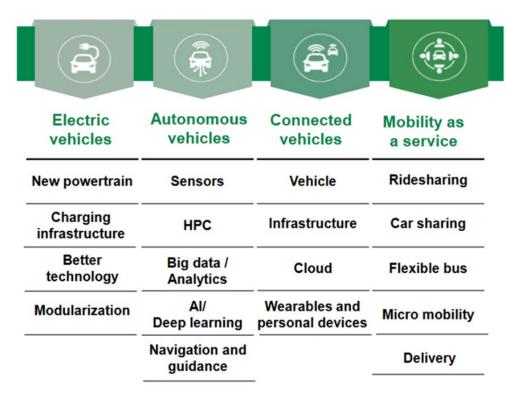


Immersion tin plating enabling reliable wettable flanks on QFN packages

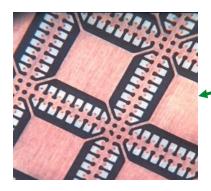
Arjan Hovestad¹, Tarun Basu², Chris Scanlan³

¹Meco Equipment Engineers B.V, The Netherlands ²Sytron Pte Ltd, Singapore ³Besi Netherlands B.V, The Netherlands

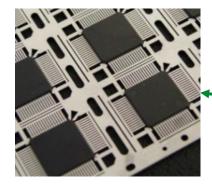

Lead frame based bottom terminated IC packages

Rapid growth in the automotive industry due to the increase in electronic components in cars and the expanding electric vehicle market*:

- Form Factor
 - Low foot print
 - Low thickness (<1 mm)
- Production cost reduction
 - Low failure rates
- Electrical and thermal performance
 - Heat dissipation to PCB


^{*}M. A. Mangrum, "Side Wettable Flanks for Leadless Automotive Packaging", Semiconductor Engineering Whitepaper, October 10, 2020,

^{*}U. Welzel, et.al,, "Wettable-Flanks: Enabler for the use of bottom-termination components in mass production of high-reliability electronic control units", SMTnet Technical Library, May 23, 2018.


Leadframe assembly processing flow

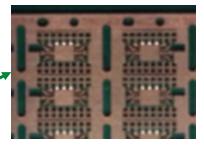
Selective silver plating

 $8-12 \mu m$ tin plating

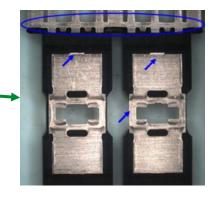
Selective silver plating

Die attach

Flux + Oxide Cleaning


Mold adhesion improvement

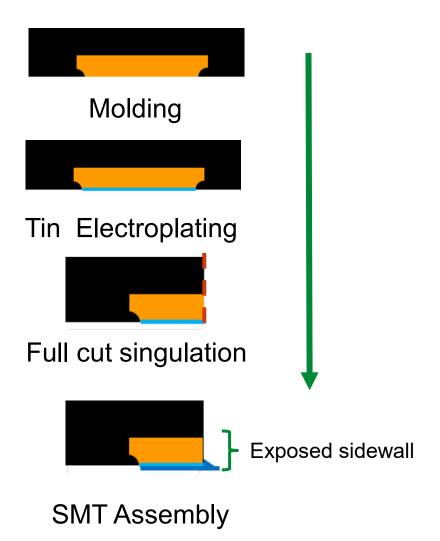
Molding


Deflashing

Solder Plating

Singulation

Surface roughening

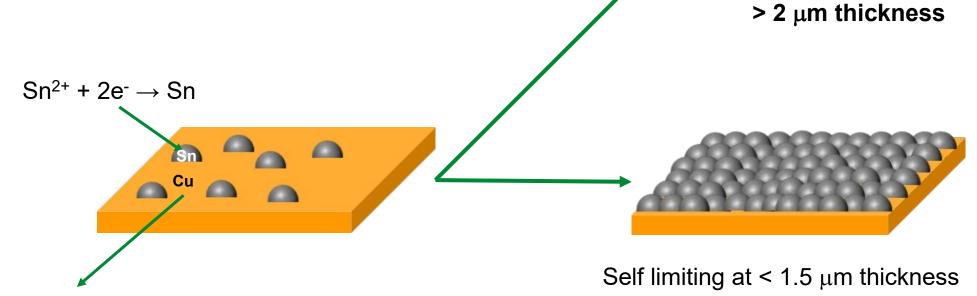


Electrodeflash

High reliability requirements

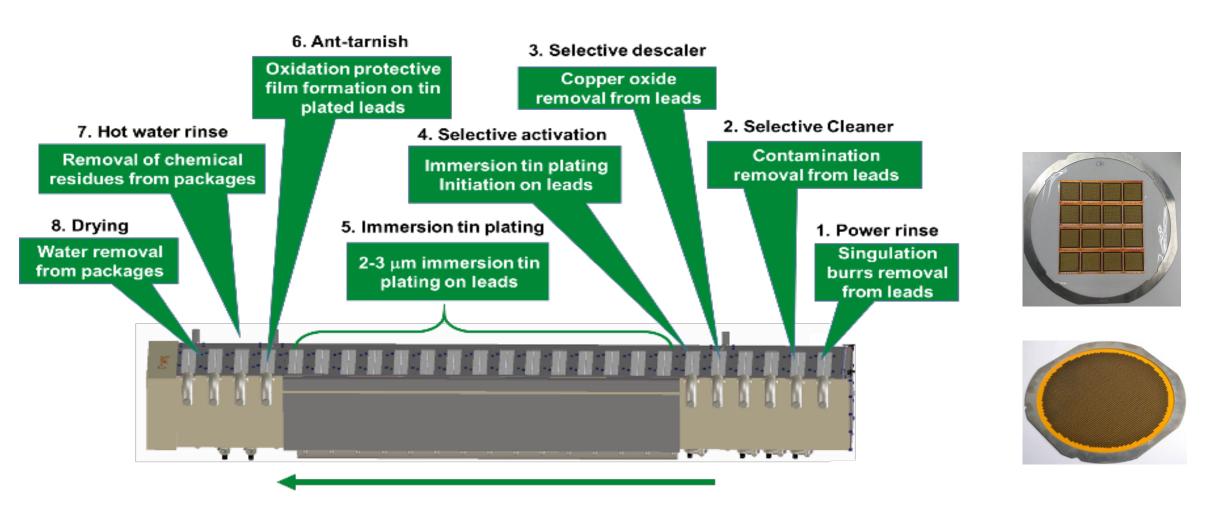
- Underside solder joints are not visible on mounted packages in automatic optical inspection (AOI).
- On the optically visible sidewalls a solder fillet does not form.
- Automatic X-ray inspection imposes package lay-out restrictions.
- Solder filler on the flanks of the package leads improves the reliability of solder joints.

QFN lead frame assembly processing flow


Standard Step-cut Full wettable flank Molding Step cut Electroplating Full cut singulation Immersion tin plating **SMT** Assembly Wetted flank

Immersion tin solder finishes:

- + Planar flat surface
- + Very good solderability
- Exposed tin oxidation risk
- Tin whiskering risk

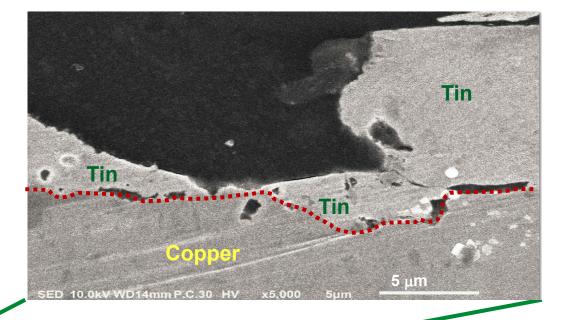


 $Cu \rightarrow Cu^{2+} + 2e^{-}$

Immersion Tin process flow

Process flow

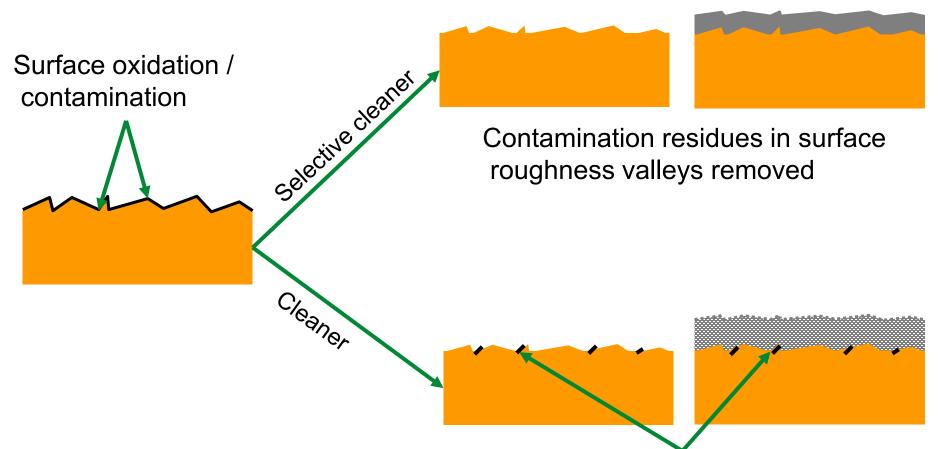
Sidewall surface roughness

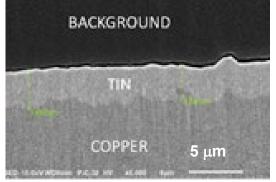


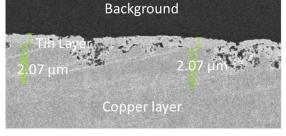
Company	Sidewall	Surface Roughness [Sdr]*	Solderability test
Α		0.04	Pass
В	4	0.02	Pass
С		0.03	Pass
D		0.05	Pass
E		0.04	Pass
		0.07	Fail
			,

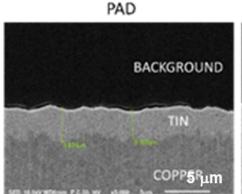
Lead side-wall cross-section

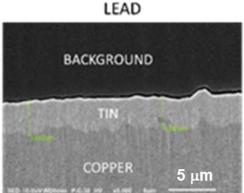
*Sdr = Developed interfacial area ratio

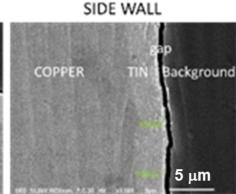

01091


4/4/2022


Selective cleaner mechanism


Contamination residues in surface roughness valley's


Immersion tin plating process



- 1. Fine-grained tin crystal structure
- Smooth and uniform tin layer
- Reduces tin whiskering*
- More uniform copper-tin intermetallic layer

10

Min: 3.0 μm Max: 3.6 μm Min: 3.0 μm Max: 3.7 μm Min: 3.0 μm Max: 3.4 μm

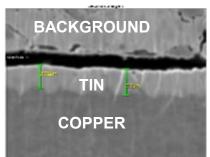
- 2. The autocatalytic immersion tin process
- Thickness 2 4 μm
- Reaction kinetics are purely heat driven: 70-75°C

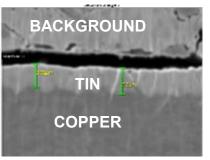
Immersion time [min]	30	45	120
Thickness [µm]	1.5-2.0	1.9-2.7	3.2-4.9
	1.5-1.9	1.9-2.4	3.0-4.8
	1.6-1.9	1.9-2.2	2.9-3.4

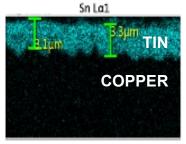
*K. Whitlaw, et.al, "A new fine-grained matte pure tin for semiconductor lead-frame applications", Circuit World, vol. 32/1, 2006, pp. 23–30.

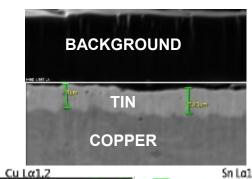
*M. Tsujimoto, at.al"The Elimination of Whiskers from Electroplated Tin", NASF Surface Technology White Papers, vol. 78(12), 2014, pp. 9 – 18.

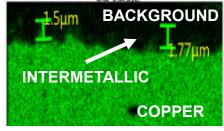
Solderability (JEDEC J-STD-002E)

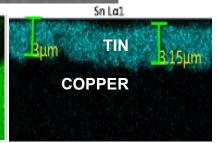


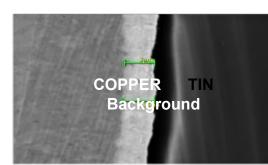

	Zero Hour	8h steam aging at 93°C/80-90%RH	16h dry bake at 150°C
QFN 5x5	- * 5 * * * * * * -		* × × × × × × × × ×
	* * * * * * * * * *	- * * * * * * * * * *	• × × × × × × × × ×
		-2888888	
-32L	- * * * * * * * * *		
Sidewall	100% solder coverage (6/6)	100% solder coverage (6/6)	100% solder coverage (6/6)
Lead	100% solder coverage (6/6)	100% solder coverage (6/6)	100% solder coverage (6/6)
Pad	100% solder coverage (6/6)	100% solder coverage (6/6)	100% solder coverage (6/6)

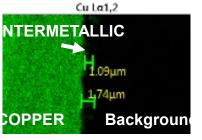

Intermetallic formation after steam aging

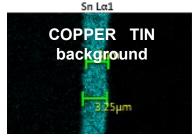



PAD LEAD SIDE WALL









Total Thickness	Intermetallic layer	Remaining Tin layer	Total Thickness	Intermetallic layer	Remainin g Tin layer	Total Thickness	Intermetallic layer	Remaining Tin layer
3.1 µm	2.7 µm	0.4 μm	3.0 µm	1.5 µm	1.5 µm	3.0 µm	1.1 µm	1.9 µm
3.3 µm	2.9 µm	0.4 μm	3.2 µm	1.8 µm	1.6 µm	3.3 µm	1.7 µm	1.6 µm

8h steam aging at 93°C/80-90%RH

01095

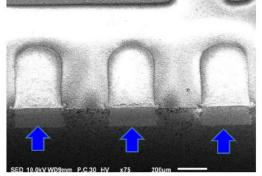
Cu La1,2

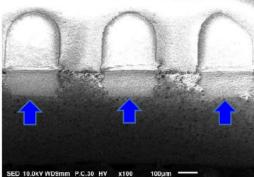
INTERMETALLIC

BACKGROUND

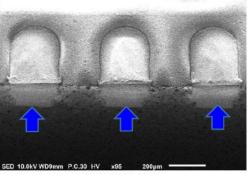
COPPER

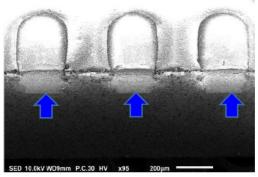
Tin whisker test




No whiskers observed on lead flanks after (JESD22-A121)

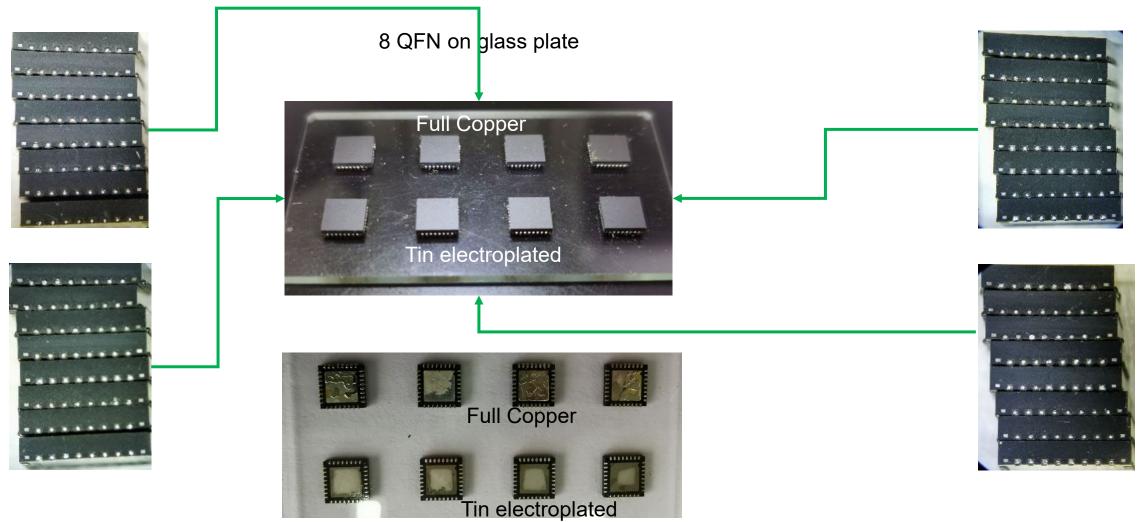
- 1. 4000h storage @ 30 ± 2°C and 60±3% RH
- 2. 4 week storage + tin reflow pre-condition and
 - 1. 4000h storage @ 55 ± 3°C and 85±3% RH
- 2. 1500 cycles: -55°C(+0°/-10°); 85°C (+0°/-10°)


Package type	Tin thickness [μm]			
	Minimum	Maximum		
20L QFN 5x5	2.1	2.8		
24L QFN 4x4	2.1	2.6		
26L QFN 4x6	2.0	2.6		
32L QFN 5x5	2.0	2.9		


20 VQFN 5x5 Sample #1 – No whisker

26 VQFN 4x6 Sample #3 – No whisker

24 VQFN 4x4 Sample #2 – No whisker



32 VQFN 5x5 – Sample #4 No whisker

Glass ceramic test

Sidewall fully soldered after zero hour, 16 hours dry bake and 8 hours steam aging

The presented immersion tin process produce good quality tin wettable flanks on exposed copper side-walls of singulated QFN packages mounted on singulation tape.

- 2 4 μm fine-grained, uniform and smooth tin layers.
- 0.5-1.5 μm of unreacted tin left after aging yields full side-wall, lead and pad solder wetting according to JEDEC J-STD-002E standard solderability tests for component lead durability.
- No whiskering observed after standard aging test for tin whiskering (JESD22-A121).
- Further qualification tests at leadless package and automotive electronics suppliers are ongoing.

