How to tailor Immersion tin plating for IC substrate applications

Contents

- Introduction
- Solder joint reliability
- 3. Plating solution and equipment
- 4. Summary take away message

Introduction

Introduction

Surface finishes and IC substrates

Task of the surface finish:

- Protect the copper surface from tarnishing and oxidation
- Maintain an active surface for various interconnect techniques
 - Soldering
 - Wire bonding
 - Pressfit (Compliant Pin)
 - Conductive Adhesives
 - Serving as a functional interface (Contact, Switches, Keypads)

Key drivers for advanced packaging evolution

- Increase functionality
- Power and performance
- Miniaturization
- Reliability

Introduction

Final finish overview

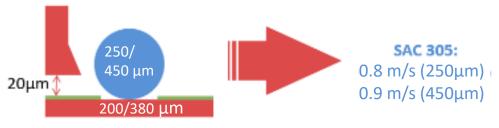
	Finish type	ENIG	EPAG	ENEPIG	Immersion Sn	HT-OSP
Coldoving	Multiple soldering (more than 3 soldering steps)				A	•
Soldering	Solder joint reliability	A	-	-		•
	Al-Wire	100			•	•
	Au-Wire	•			•	•
Wire bonding	Pure Cu-Wire	•	A	▼	•	•
	Cu-Pd-Wire	•		A	•	•
Fine line	Fine pitch	▼		▼		•
Planarity	For SMD			-		
High frequency capability	HF applications			•		
Shelf life	Shelf life before assembly	≥12 months	≥12 months	≥12 months	12 months	6-12 months

Immersion tin process flow

Cleaning		
Etch Cleaning		
Conditioner		
i-Sn Bath		
Post Cleaning		
PostDip		

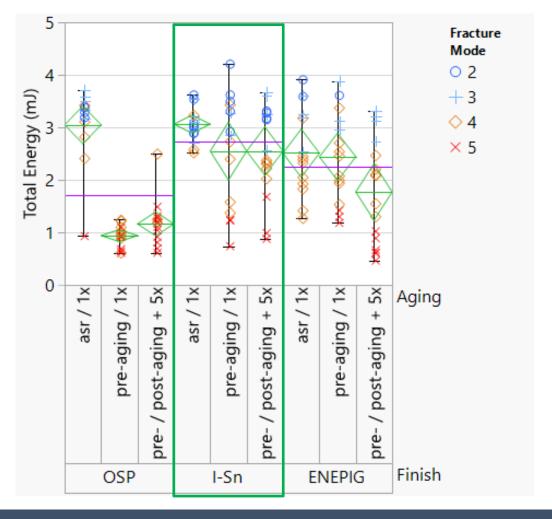
Bath Names	Temp.°C	Time (min.)
Acidic Cleaner	35 - 45	3 - 8
MicroEtch	25 - 35	1 - 2
Cold tin bath	20 - 30	1 - 2
Hot tin bath	65 - 73	9 - 15
Reduction of IC	60 - 65	1 - 2
Prevention of discoloration	20 - 30	5 – 25 sec

Solder joint reliability


High Speed Shear Test SAC 305 - conditions

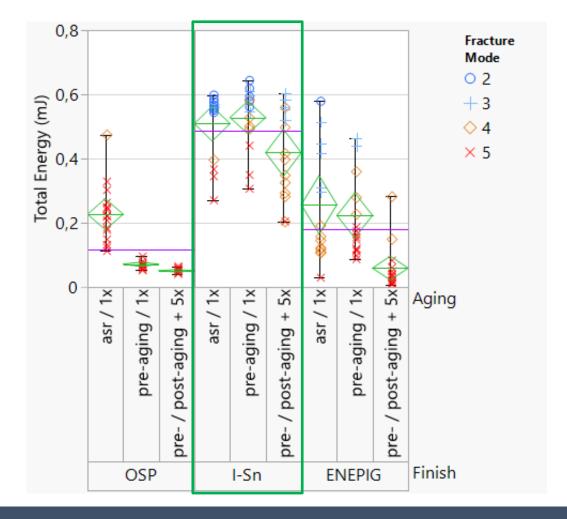
Alloy	SAC 305
Ball diameter	250/450 μm
Flux type	Kester Tacky Flux TSF 6502
Reflow profile	TSF 6052 Leadfree Linear Profile
Reflow atmosphere	N ₂
PCB type	SFTB1 SMD BGA SRO 380

	OSP	Sn	Ni	Pd	Au
OSP	0.3				
USP	μm				
ISn		1 μm			
ENEPIG			7 um	0.04	0.06
LINEPIG			7 μm	μm	μm


Mode 1	Pad pull-out
Mode 2	Intermetallic fracture < 5%
Mode 3	Intermetallic fracture < 25%
Mode 4	Intermetallic fracture < 95%
Mode 5	Intermetallic fracture > 95%

	Aging conditions
ASR	Ball attach + 1 reflow ► HSS
Pre-aging	2h@175°C▶hot rinse, air dry▶ball attach + 1 reflow▶HSS
Pre-/post aging	2h@175°C▶hot rinse, air dry▶ball attach + 1 reflow ▶120h@60°C/60%RH + 5xreflow▶HSS

High Speed Shear Test – results 450μm solder ball



I-Sn performs consistently well compared to OSP and ENEPIG

High Speed Shear Test - 250µm solder ball

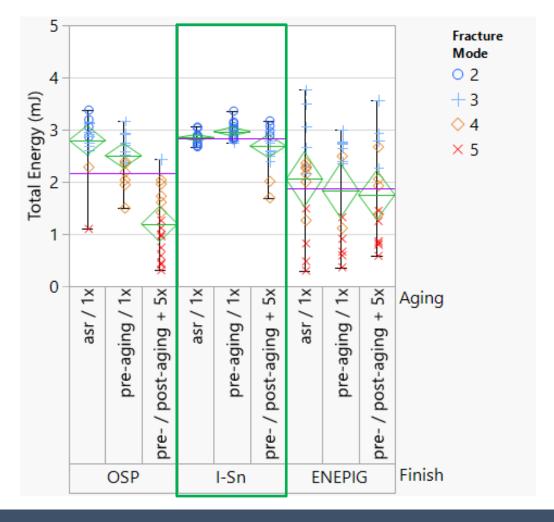
For smaller ball diameter difference to OSP gets more pronounced

High Speed Shear Test LF35 - conditions

Alloy	LF 35
Ball diameter	250/450 μm
Flux type	Kester Tacky Flux TSF 6502
Reflow profile	TSF 6052 Leadfree Linear Profile
Reflow atmosphere	N ₂
PCB type	SFTB1 SMD BGA SRO 380

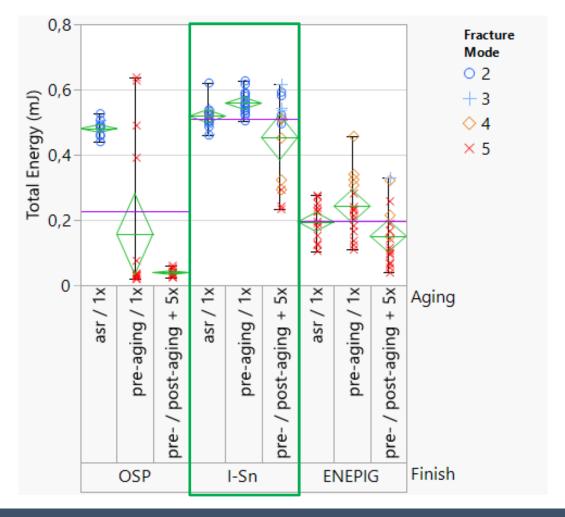
	OSP	Sn	Ni	Pd	Au
OSP	0.3				
OSF	μm				
ISn		1 μm			
ENEPIG			7 μm	0.04	0.06
LINLFIG			/ μιτι	μm	μm

Mode 1	Pad pull-out
Mode 2	Intermetallic fracture < 5%
Mode 3	Intermetallic fracture < 25%
Mode 4	Intermetallic fracture < 95%
Mode 5	Intermetallic fracture > 95%



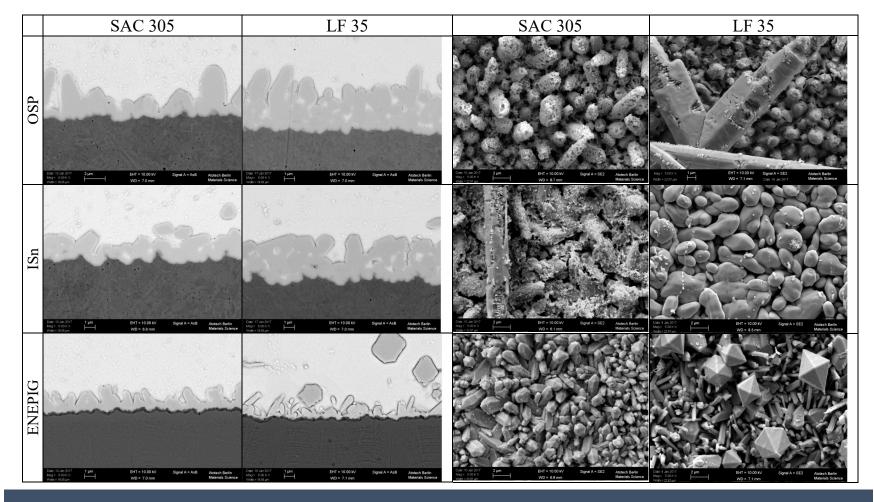
	Aging conditions
ASR	Ball attach + 1 reflow ► HSS
Pre-aging	2h@175°C▶hot rinse, air dry▶ball attach + 1 reflow▶HSS
Pre-/post aging	2h@175°C▶hot rinse, air dry▶ball attach + 1 reflow ▶120h@60°C/60%RH + 5xreflow▶HSS

High Speed Shear Test – results 450μm solder ball



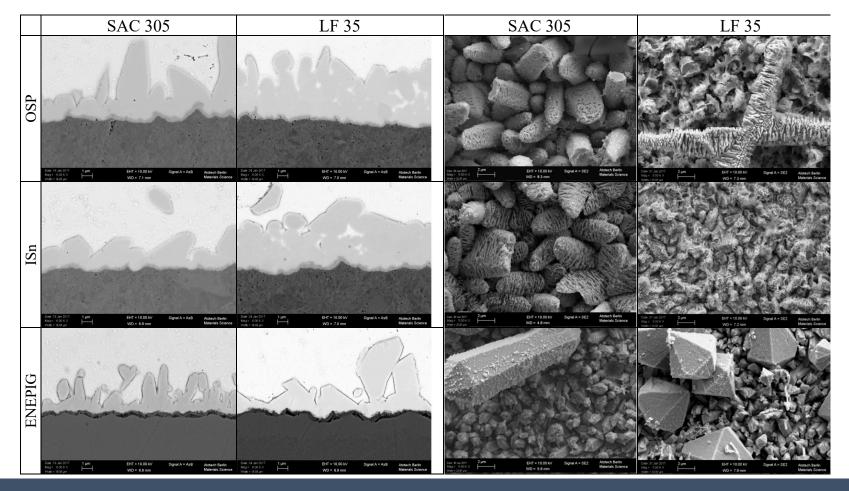
Less brittle fractures compared to SAC, aging impacts OSP performance

High Speed Shear Test - 250µm solder ball



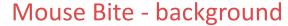
Smaller ball diameters confirm previous trends

IMC evaluation after 1x reflow

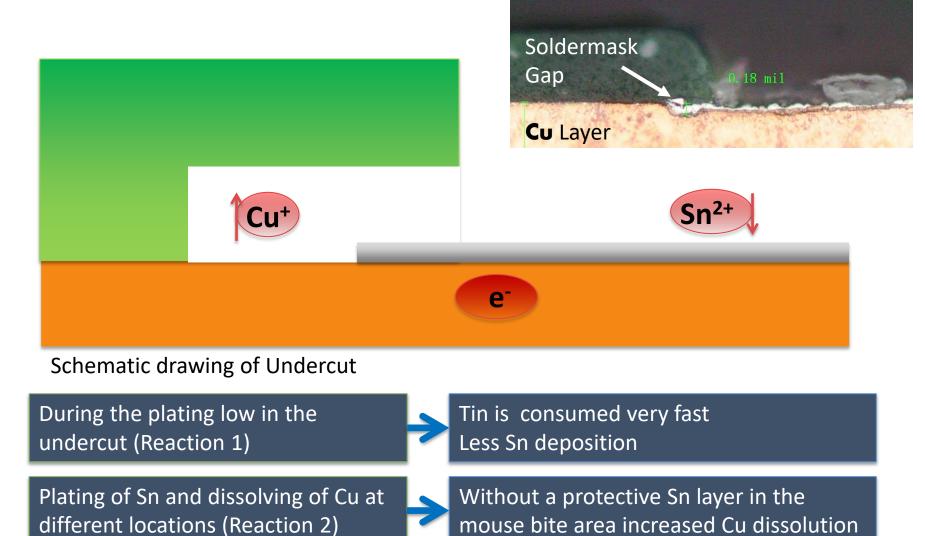


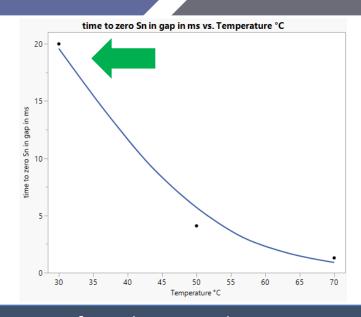
LF35 IMC exhibits smaller crystal structures compared to SAC 305

IMC evaluation after after pre/post aging 5x reflow



Increased IMC thickness, continuous and dense in particular for ISn




Pretreatment

Conditioner (cold tin bath) with US device

Stannatech tin bath

Posttreatment and drying

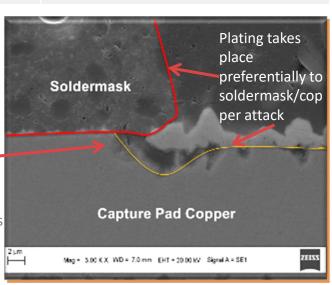
Temperature in °C	Time to zero Sn in gap in ms
70	1.3
50	4.1
30	20

Low temperature

More time for solution exchange

Ultra sonic

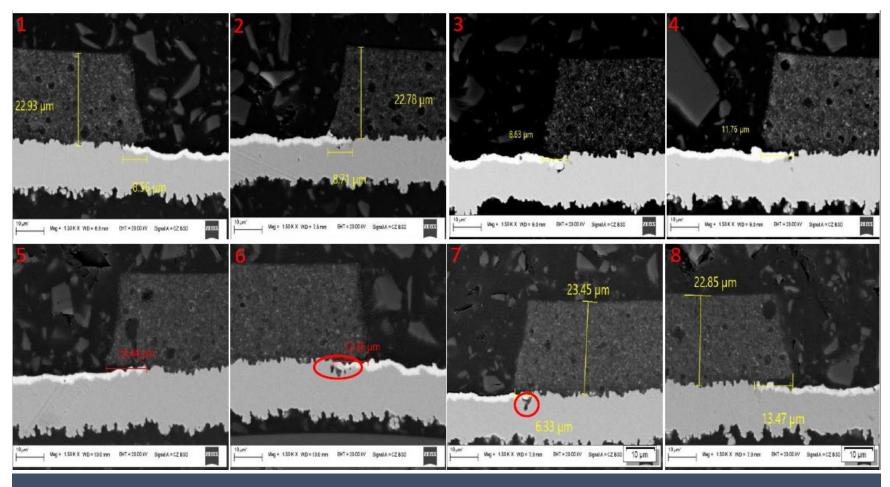
Increase/improve the solution exchange


Reduced Viscosity

	ISn for PCB	ISn for ICS
Viscocity (mPas)	11.2	6.4
Density	1.23	1.25

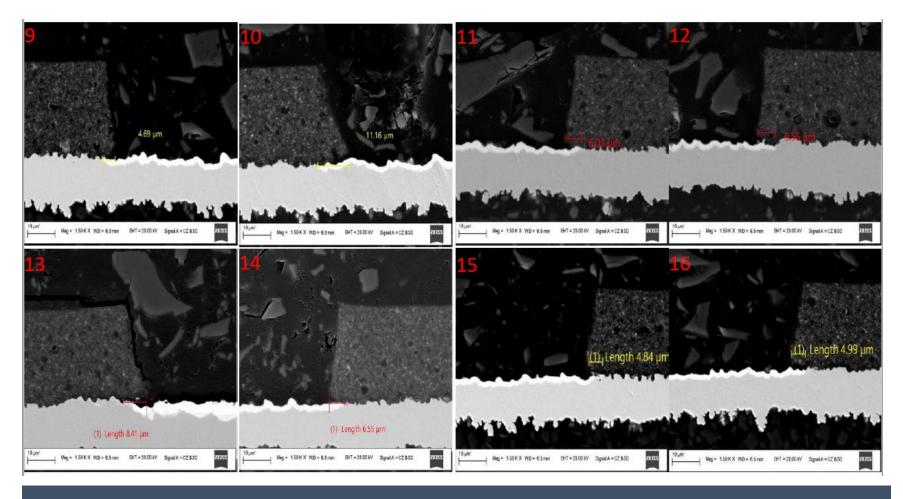
- A reduction in viscosity optimizes solution exchange
- The similar densities reflect the optimizations in metal ion supply

Higher metal content induces the filling of micro structures under low exchange conditions



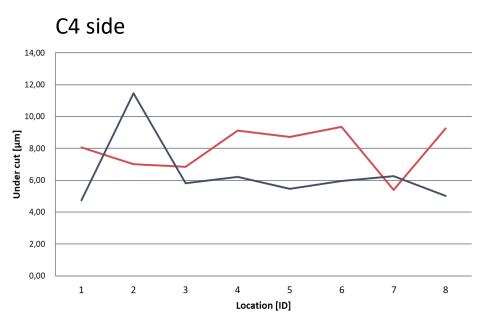
Low velocity = high solution exchange in vertical processes

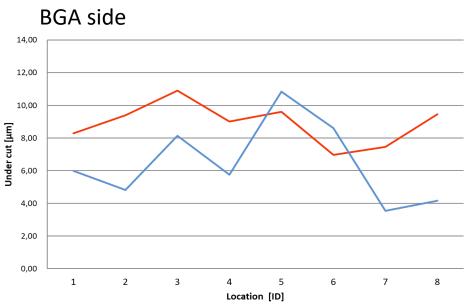
C4 undercut ISn for PCB



Some corrosive attack and underplating observed

C4 undercut ISn for ICS

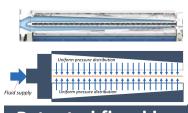



Reduced underplating, no corrosive attack

Underplating

ISn for PCB ISn for ICS

Significant better performance with reduced solution viscosity


High-end immersion tin system suited for automotive and IC substrates

Auxiliary equipment

extending chemistry life time, process stability and provide a sustainable production

Patented flood bar for uniform solution

exchange

More than 10 years of experience in integration of equipment to customer systems and infrastructure (e.g. MES-systems)

spray bar

High quality spray nozzles and effective pressure performance

Digital solutions

for process control, real time monitoring and repetitive results

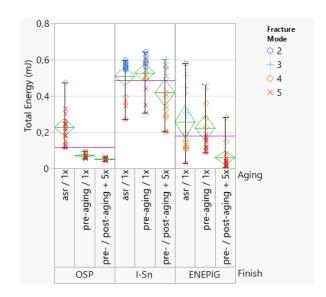
Horizontal equipment systems can easily be combined with ISn for ICS. This approach fuses high end equipment with optimized utility chemistry.

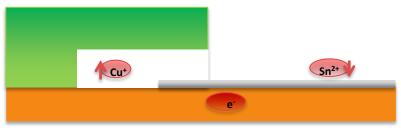
Horizontal ISn plating for PCB

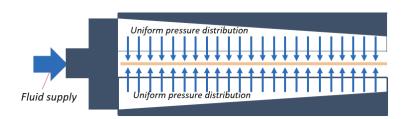
- More than 20 years of experience
- Highest corrosion resistance compared to other surface finishes
- Anti whisker additive for whisker prevention

Horizontal ISn plating for ICS

- Suitable for high frequency
- Suitable for fine L/S
- Reliable CuSn solder joints formed




Summary



Summary – take away message

- ISn exhibits excellent solder joint reliability compared to OSP or ENEPIG with cost benefits over ENEPIG
- High solder joint ductility can be achieved even in aged conditions
- ISn tailored electrolytes can overcome limitations caused by high plating solution viscosity such as corrosive undercut
- Horizontal plating equipment can ensure constant plating performance and full process control and panel tracking

Thank you

for your attention!

Contact

GPT-SF

Atotech Deutschland GmbH Erasmusstraße 20 10553 Berlin – Germany

+ 49 (0) 30 349 85 0 info@atotech.com www.atotech.com

Technology for tomorrow's solutions