Hybrid Bonding for the Next Generation of High-Performance Devices

Laura Mirkarimi
VP of Engineering, 3D Portfolio and Bonding Technology

March 10, 2022
Topics for Discussion

• Market Drivers for Hybrid Bonding
• Direct Bond Interconnect (DBI®) Description and Value Proposition
• Technology Demonstrations
• Supply Chain Readiness
• Market Adoption of Hybrid Bonding Technology
Market Drivers for Technology Adoption of Hybrid Bonding

- More than Moore Revolution

- Chiplet Architectural Concepts for Performance Enhancement and Cost Reduction

- Limitations in Solder Interconnect
Moore’s Law Reaching Limits

What Options Do We Have to Solve This Challenge?

• New Materials for Transistors
• Innovation in Computing Approaches
• Innovation in Packaging and Chip Architecture

L. Mirkarimi, “Hybrid Bonding: Fueling Advanced Memory and High-Performance Compute Roadmaps,” IMAPS Webinar; July 2020.
Key Drivers in Heterogeneous Integration

• Disaggregation is distributing functions onto separate wafers or die

• Advantages:
 • Select optimized Si process and nodes for the particular function
 • Shorter time to market improves flexibility to bring innovative products to the market

• Chiplet Library Menu

<table>
<thead>
<tr>
<th>Circuit Function</th>
<th>Cores</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoC</td>
<td>14nm</td>
<td>I/Os</td>
</tr>
<tr>
<td>FPGA</td>
<td>10 nm</td>
<td>Thermal Budget</td>
</tr>
<tr>
<td>Memory</td>
<td>5 nm</td>
<td>Comms</td>
</tr>
<tr>
<td>Accelerator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Cost savings of 2x with chiplet compared to monolithic
• Higher performance over monolithic
• Mixing and matching would allow economies of scale for many companies.

• Challenges at the package level during Re-aggregation
 • Thermal; electrical; reliability performance
 • Interconnect scalability for highly parallel interconnection requires interconnect scaling
Hybrid Bonding and Direct Bond Interconnect (DBI®)

Features

- **Bond Metal**: Cu, Ni
- **Bond Pad Size**: <1μm to 20μm
- **Low Temperature**: ~150 – 400°C
- **Compatible Dielectrics**: SiₓOᵧ, SiₓOᵧNₓ, SiₓCᵧNₓ

Cross Section

- Spontaneous bond between dielectric interface at room temperature
- Metal interconnect forms at elevated temperature, but no external pressure
- Interdiffusion of the metal pads requires time at temperature for metallurgical bond.
Hybrid Bonding Advantages

Hybrid Bonded Module

- **DBI® Ultra Interconnect**
- **Memory Stack**
- **Logic (CPU, GPU, FPGA or SoC)**
- **2.5 D / 3D DBI® Ultra Hybrid Bonding Solutions**

Interconnect Comparison

Micro-Bump
- Standoff
- Solder cap
- Cu pillar
- UBM/Barrier
- Active Device Area

Die 1
- RDL
- M4

Die 2
- RDL
- M4

Key Challenge
- Standoff of ~20 um
- UBM Fab… (Masks)
- Underfill
- High Temp Bonding
- >35 um pitch

Direct Bond Interconnect
- **When Less is More …**
- Hybrid Bond Interface

Advantage
- No Standoff
- No UBM
- No Underfill
- No Heat at Bond
- No Pitch constraints

More
- Scalability
- High Throughput Bonding
- Improved Thermal Performance
- Higher Speed Binning Stacks
- Improved Electrical Performance
- Improved Reliability and Yield
- Heterogenous Integration
- Cost Savings
- Flexibility in Architecture
- Path to Chiplet Proliferation
- Uniformity of Packaging Platforms
Hybrid Bonding Advantages

Hybrid Bonded Module

- **DBI®**
- **DBI® Ultra**

Memory Stack

DBI Ultra Interconnect

Logic (CPU, GPU, FPGA or SoC)

2.5 D / 3D DBI® Ultra Hybrid Bonding Solutions

Interconnect Comparison

Micro-Bump

- Die 1
- Die 2
- Solder cap
- Cu pillar
- UBM/Barrier
- Active Device Area
- Standoff

Key Challenge

- Standoff of ~20 um
- UBM Fab… (Masks)
- Underfill
- High Temp Bonding
- >35 um pitch

Direct Bond Interconnect

- **When Less is More…**

- **More**
 - Scalability
 - High Throughput Bonding
 - Improved Thermal Performance
 - Higher Speed Binning Stacks
 - Improved Electrical Performance
 - Improved Reliability and Yield
 - Heterogenous Integration
 - Cost Savings
 - Flexibility in Architecture
 - Path to Chiplet Proliferation
 - Uniformity of Packaging Platforms

- **Advantage**
 - No Standoff
 - No UBM
 - No Underfill
 - No Heat at Bond
 - No Pitch constraints
Enhanced Electrical and Thermal Performance

Simulation Comparison

TCB-Pad
- DC Resistance (mOhm): 11.7
- Self-inductance (pH): 2
- Capacitance (fF): 6.1

DBI-Pad
- DC Resistance (mOhm): 32.7
- Self-inductance (pH): 25.3
- Capacitance (fF): 141.7

A. Agrawal et al, ECTC 2017

4-Die Stack Simulation Comparison

TCB-Pad
- HBM—4 Die Stack
- Tj (°C): 67
- ΔT between die (°C): 9

DBI-Pad
- HBM—8 Die Stack
- Tj (°C): 59
- ΔT between die (°C): 1
- Forced Convection (3m/s); 25°C

A. Agrawal et al, ECTC 2017

DBI® Interconnect Advantage in Die Stacks

- Tj is reduced by 19-25 degrees
- Differential Temperature
 - 1 degree for 4 die stack (9x better)
 - 4 degrees for 8 die stack (7x better)

DBI® Interconnect Offers

- 1/50th size of typical TCB pad
- 96% less Capacitance (faster)
- 64% less Resistance (lower DC power)
- 92% less Self-inductance
- Smaller electrical load; less power

Design Analysis 2D/3D; Hybrid/TCB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2D</th>
<th>3D</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock period (ns)</td>
<td>5.5</td>
<td>-0.68%</td>
<td>-13%</td>
</tr>
<tr>
<td>Total Power (mW)</td>
<td>23.5</td>
<td>+20%</td>
<td>+18%</td>
</tr>
<tr>
<td>Area (μm²)</td>
<td>193,600</td>
<td>+10%</td>
<td>-429%</td>
</tr>
</tbody>
</table>

Hybrid Bond Pads 3D Architectural Advantage

- Up to 33% Improvement in Power Reduction
- Up to 10% of an Area Improvement over
DBI® Integration Reduces Process Steps

4-Die Stack Test Vehicles

- Optical Cross Section
- Die 4
- Die 3
- Die 2
- Die 1
- Host

Interconnects:
- Face to Face at Die to Host
- Face to Back at Die to Die

Die-Wafer Level Process Savings

<table>
<thead>
<tr>
<th>Module Steps</th>
<th>Frontside Process</th>
<th>TSV Side Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UBM Solder</td>
<td>DBI</td>
</tr>
<tr>
<td>1</td>
<td>Passivation opening</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Lithography</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Adhesion layer, Cu seed layer</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Cu electroplating</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Ni electroplating</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td>Solder electroplating</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>Resist strip</td>
<td>NO</td>
</tr>
<tr>
<td>8</td>
<td>Wet etch (Cu + adhesion layer)</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>Solder reflow</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>Cu CMP: NO</td>
<td>Yes</td>
</tr>
</tbody>
</table>

DBI Module Steps = 5 - 1 CMP = 4
TCB Module Steps = 9

DBI Module Steps = 1
TCB Module Steps = 7

11 Fewer Wafer Process Module Steps for DBI over Solder µBump

G. Gao et al, ECTC 2020

L. Mirkarimi- Hybrid Bonding for the Next Generation of High-Performance Devices
DBI®Ultra Direct Bond Interconnect Process Flow Schematic

Die to Wafer Hybrid Bonding

BEOL Cu Damascene Clean/Dice Activate Bond Anneal

DIE PREPARATION

Metal Bond Pad Silicon Wafer

WAFER 1

Metal Bond Pad Silicon Wafer

WAFER 2

Chemical Mechanical Polishing

WAFER SURFACE PREPARATION

Chemical Mechanical Polishing

Wafer Activation

Diced Wafer

Tape Frame

Die Activation

Plasma

Die Pick

Flip, Align & Bond

Wafer

Low Temperature Batch Anneal

ROOM TEMPERATURE DIE TO WAFER BONDING

Repeat

Wafer Activation

Die Pick

Plasma

Flip, Align & Bond

Repeat

Low Temperature Batch Anneal

Wafer Activation

Die Pick

Plasma

Flip, Align & Bond

Repeat

Low Temperature Batch Anneal

Wafer Activation

Die Pick

Plasma

Flip, Align & Bond

Repeat

Low Temperature Batch Anneal

Wafer Activation
Technology Demonstrations

• Build test vehicles to demonstrate the technology capability
• Test structures similar to real applications
 • pad diameter
 • pad pitches
 • die dimensions (x,y, and z)
Validated Hybrid Bonding Technology Demonstrations

<table>
<thead>
<tr>
<th>Die Size</th>
<th># Interconnects in Main Chain of Test Vehicle Circuit</th>
<th>Pad Diameter (mm)</th>
<th>Pad Pitch (mm)</th>
<th>Assembly Technology</th>
<th>IO</th>
<th>Reliability Tests</th>
<th># Die Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 12</td>
<td>>8,000,000</td>
<td>1.2</td>
<td>2.4</td>
<td>wafer to wafer</td>
<td>Face to Face</td>
<td>Not Tested</td>
<td>1</td>
</tr>
<tr>
<td>1.9 x 1.9</td>
<td>114,920</td>
<td>1.9</td>
<td>3.8</td>
<td>wafer to wafer</td>
<td>Face to Face</td>
<td>Not Tested</td>
<td>1</td>
</tr>
<tr>
<td>8x12</td>
<td>1,600,000</td>
<td>2</td>
<td>4</td>
<td>die to wafer</td>
<td>Face to Face</td>
<td>Planned</td>
<td>1</td>
</tr>
<tr>
<td>8x12</td>
<td>31,000</td>
<td>10 ; 5</td>
<td>40</td>
<td>die to wafer</td>
<td>Face to Face</td>
<td>Completed</td>
<td>1</td>
</tr>
<tr>
<td>8x12</td>
<td>9480</td>
<td>10</td>
<td>38</td>
<td>die to wafer</td>
<td>Face to Face, Face to Back; TSV to DBI</td>
<td>Completed</td>
<td>5</td>
</tr>
</tbody>
</table>

- The size range for a chiplet die (~10mmx10mm)
- DRAM die ~ 8mm x12mm
- TSV pitch ~ 38-40 um
- Logic applications require finer pitch
DBI® Ultra: DBI to DBI and TSV to DBI Memory Test Vehicle Details

- 8 x 12 mm Test Chip
- 2 Layer Metal Pattern: RDL + DBI Bond Pads
- 10 µm pad on 40 µm pitch
- Main Center Array: 50 mm² with 31,356 daisy chain links
- Edge Arrays: 3400 – 5000 links, with links within 200 µm of die edge
- Both 200 mm and 300 mm substrates and component die

Tom Workman et al., IMAPS (March 2020)

- Size: 8.0 mm x 12 mm x 50 µm thickness
- TSV: 5 µm diameter on 35 µm pitch / DBI 15um on 35um pitch
- Main Array: 316 x 30 = 9,480 links
- Right & Left Chains: 316 x 2 = 632 links
- Left Edge Array: 316 x 8 = 2,528 links

G. Gao et al, “ECTC 2021”
DBI® Ultra Interconnect Reliability Performance

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Condition</th>
<th>Results</th>
<th>Test Condition</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Cycling</td>
<td>-40C to 150C 2000 cycles</td>
<td>Pass</td>
<td>-40C to 125C 2000 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>Autoclave</td>
<td>121C, 100%RH, 15PSI, 168hrs</td>
<td>Pass</td>
<td>121C, 100%RH, 15PSI, 168hrs</td>
<td>Pass</td>
</tr>
<tr>
<td>Moisture Sensitivity MLS3</td>
<td>24hr prebake+30C/60 %RH 192hrs + 3X Reflow</td>
<td>Pass</td>
<td>24hr prebake+30C/60 %RH 192hrs + 3X Reflow</td>
<td>Pass</td>
</tr>
</tbody>
</table>

- Hybrid Bond Interconnect (DBI) is More Reliable than μbump Interconnect:
 - Enhanced Reliability (all Cu interconnect, no underfill)
 - Enhanced Resistance to Electromigration (all Cu interconnect)
 - Dielectric Hermeticity protection (<10^{-11} atm-cc/s)
DBI® Ultra: DBI to DBI Fine Pitch Logic Test Vehicle

Face to Face Fine Pitch Logic TV

- Size: 8 mm x 12 mm
- 2 μm pad on 4 μm pitch
- 5 Daisy Chain Arrays

<table>
<thead>
<tr>
<th>Array</th>
<th>Area (mm²)</th>
<th>Links</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Main (DC)</td>
<td>50</td>
<td>1,600k</td>
<td>9 subchains</td>
</tr>
<tr>
<td>Top & Bottom (DCT)</td>
<td>6</td>
<td>190k</td>
<td></td>
</tr>
<tr>
<td>Left (DCL)</td>
<td>8</td>
<td>250k</td>
<td>2 subchains intertwined serpentines</td>
</tr>
<tr>
<td>Right (DCR)</td>
<td>8</td>
<td>125k</td>
<td>2 subchains intertwined serpentines</td>
</tr>
</tbody>
</table>

Experimental Results

- 250°C Anneal; 1.6M interconnects

Lot Void Free (%)
- Lot 1: 95%
- Lot 2: 97%
- Lot 3: 96%

- Fine pitch (2 μm pad); 1.6M interconnects test vehicle yields at 250°C anneal
- High electrical test vehicle yield
 - Even with pad off set of (0.8*Pad Diameter)
 - Similar for both coarse and fine pitch test vehicles
Hybrid Bonding Development Areas in Packaging Industry

- Extending the Die Size Range in Die to Wafer
- Further Reduction of Thermal Budget in Final Anneal
- More Design Flexibility in the Bond Layer Metallization
- Improved Integration for Performance and Cost Reduction
Extending The Hybrid Bonding Technology Demonstration Range

Semiconductor Die Size with Application Space

- Heterogenous Integration
 - LEDs
 - MEMs
 - RF, 5G
 - Lasers
 - Image Sensors
 - NAND
 - DRAM SRAM
 - 3D Chips
 - Chiplets
 - HPC, FPGA

0.1mm² - 1mm² - 10mm² - 100mm² - 900mm²

Feasibility, Yield, Reliability

Multi-Chip Modules

Single Die and Multi-Die Stacking
- 4-die Stack
- 8-die Stack

SoC and Large Die Modules

IMAPS 18th International Conference on DEVICE PACKAGING | March 7-10, 2022 | Fountain Hills, AZ USA
<table>
<thead>
<tr>
<th>Thermal Budget Reduction</th>
<th>DBI Hybrid Bond Layer Innovation</th>
<th>Integration Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prior Demonstrations</td>
<td>• DBI Bond Layer Design</td>
<td>• Technology adoption will lead to the ability to innovate with integration</td>
</tr>
<tr>
<td>• 250 and 200C</td>
<td>• CMP Improvement(^4)</td>
<td></td>
</tr>
<tr>
<td>• Industry Wants Lower Temp</td>
<td>• Design Flexibility(^5)</td>
<td>• Availability of this platform technology will unleash the imagination of chip architects.</td>
</tr>
<tr>
<td>• <200C</td>
<td>• Rework: Is it possible?</td>
<td>• Architectural improvements</td>
</tr>
<tr>
<td>• Industry Activity:</td>
<td>• BEOL Materials Innovations</td>
<td>• Die to Die</td>
</tr>
<tr>
<td>• Cu microstructure</td>
<td>• Dielectrics(^6)</td>
<td></td>
</tr>
<tr>
<td>• Nanotwin Cu(^1,2)</td>
<td>• Cu passivation</td>
<td></td>
</tr>
<tr>
<td>• Alternative options</td>
<td>• Metals</td>
<td></td>
</tr>
<tr>
<td>• are being investigated(^3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. L. Mirkarimi et al, *ECTC* June 2022
5. Theil et al; ECTC, June 2022
7. Gao et al; ECTC, June 2022
Supply Chain Readiness

• How did we get where we are today?
• Industry Activity
3DIC Hybrid Bonding: R&D Evolution and HVM Timelines

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• W2W bonding (<200°C)</td>
<td>• D2W SiO2-SiO2 Interconnect-over the edge</td>
<td>• First DBI D2W Ni DBI</td>
<td>• W2W Cu DBI 2 µm pitch</td>
<td>• Cu D2W HVM D2W Process</td>
<td>• Solving Fundamental Challenges</td>
</tr>
<tr>
<td>• Heterogeneous mm Wave III-V to AlN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Reliability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fine Pitch D2W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Lower Total Thermal Budgets</td>
</tr>
</tbody>
</table>

R&D Timeline

- **1998**
 - W2W bonding (<200°C)
 - Heterogeneous mm Wave III-V to AlN
- **2000**
 - D2W SiO2-SiO2 Interconnect-over the edge
- **2005**
 - First DBI D2W Ni DBI
 - 25um pitch
- **2010**
 - W2W Cu DBI 2 µm pitch
- **2015**
 - Cu D2W HVM D2W Process

Manufacturing Timeline

- **2005**
 - (D2W W2W) Hybrid Bonding
- **2010**
 - BSI-CIS (W2W) Direct Bonding
- **2015**
 - Compute Intensive Modules (2.5 and 3D) (D2W)
- **2020**
 - Licensed ZiBond, DBI and DBI Ultra
 - Licensed DBI Portfolio
- **2025**
 - Professional Integration of DBI Portfolio
Industry Supply Chain Readiness for Hybrid Bonding

✓ Wafer Fabrication Availability
✓ Equipment Availability and Manufacturer Roadmap Alignment
✓ Availability of Metrology Equipment for Process Control

Xperi Working with Key Equipment Vendors Since 2017

Flip Chip Bonder Equipment Vendors with Hybrid Bonding Roadmaps

- Besi
- Kulicke & Soffa
- Süss MicroTec

Metrology and Process Equipment Vendors

- Park Systems
- AXUS Technology
- Lam Research
- Applied Materials
- Veeco
- DISCO
Hybrid Bonding Activity is Increasing in the Industry

<table>
<thead>
<tr>
<th>Semiconductors Company Type</th>
<th>Companies with Hybrid Bonding Activity and/or Roadmap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertically Integrated</td>
<td>Sony, Samsung, SK Hynix, Micron, YMTC, Intel, Nanya, Kioxia</td>
</tr>
<tr>
<td>Foundry</td>
<td>UMC, TSMC, Samsung, Global Foundries, Tower Semi</td>
</tr>
<tr>
<td>Foundry+ Assembly</td>
<td></td>
</tr>
<tr>
<td>Fabless</td>
<td>Omnivision, AMD, Meta, Nvidia, Arm, Xilinx, Google</td>
</tr>
<tr>
<td>Government Focused</td>
<td>N’Hanced, Raytheon, Sandia National Labs, Lincoln Labs</td>
</tr>
</tbody>
</table>

Partial list.
Hybrid Bonding Delivering Performance in Next Generation Devices

Hybrid bonding technology is a toolkit enabling the next generation of packaging modules

• **Examples of Widespread Adoption**
 - 1st hybrid-bonded 3D NAND product from YMTC (2020). Wafer to Wafer process.1
 - AMD Ryzen 5000 series CPU with Hybrid Bonding at Computex 2021, Enhanced Performance (~12%) with hybrid bonding equivalent to an entire processing node.2
 - At Connecting Heterogeneous System Summit, Facebook keynote speaker (Facebook AR/VR reality lab) presented hybrid bonding as critical aspect of AR/VR image sensor for pixel level interconnect.3
 - Intel Foveros Direct with an interconnect pitch of 10 um or less to be in production in 2023.4

2. AMD, Lisa Su, “Computex 2021”
3. Facebook, Barbara De Salvo, Connecting Heterogeneous Systems Summit”, May 2021.
4. Intel, K. Radhakrishnan; “Connecting Heterogeneous Systems Summit”, May, 2021
Summary

• Demonstrated multiple test vehicles with hybrid bonded DBI interconnects have a high yield, enhanced reliability and improved performance over solder μbump.

• Hybrid bonding technology is just beginning to become available in chip to wafer formats in HVM
 • Market adopting at the major pain points
 • Proliferation anticipated across broad segments
 • As more companies access to the DBI toolkit, innovation will follow.

• Hybrid bonding is creating innovation opportunities in SEMI-industry
 • Architecture
 • Materials and Process Integration
 • Assembly Technology
 • Applications and Systems
Thank you for your attention!

Acknowledgements:

Gill Fountain, Thomas Workman, Guilian Gao, Dominik Suwito, Gabe Guevara, Cyprian Uzoh, Bongsub Lee, Jeremy Theil, KM Bang, Michael Huynh, George Hudson, Pawel Mrozek, Abul Nuruzzaman and Richard McClellan

Contact Information: laura.mirkarimi@xperi.com