

Electronic Materials

Non-Conductive Film (NCF) Underfill: Materials, Performance, and Evolution to Next Generation Devices

Edgardo Anzures, Paul Morganelli, Robert Barr, Jeffrey Calvert, Avin Dhoble, David Fleming, Jong-Uk Kim, Herong Lei Dow Electronic Materials, Advanced Packaging Technologies

Jürgen Grafe, Julian Haberland, Fraunhofer IZM

IMAPS Device Packaging Conference March 14-16, 2016

Outline

- Non Conductive Film (NCF) Application and Property Targets
- Current NCF Technology (GEN-1)
- Bonding in High I/O Devices (GEN-2)
- Exploration into Thermally Conductive NCF (GEN-3)
- Summary

Pre-applied Underfill Application NCF Vs NCP Underfill

- NCF is applied to wafer or substrate prior to bonding; eliminates handling and dispensing from the assembly line
- NCF lamination provides precise, uniform placement tight keep-out zones
- NCF is applied after back end of assembly provides support to thinned die after back grinding

NCF Film Formation Process

Bonding Process and Key Parameters

Bonding Process and Key Parameters

IZM

6. Reliability- no filler entrapment in solder joints, correct balance of cured properties (Tg, modulus, CTE to reduce stress)

2022 Antiological and the content of the content of

001198

Current NCF Technology (GEN-1)

Properties of Current NCF

Property	GEN-1		
Minimum viscosity, Pa-s	30,000 (130°C)		
Cure onset temp (DSC, 10°C/min), °C	141		
Peak cure temp (DSC, 10°C/min), °C	166		
Tg (TMA), ⁰C,	122		
CTE, α ₁ , ppm/ °C	28		
Modulus, GPa	5.8		

Higher viscosity provides resistance to voiding

🗾 Fraunhofer

IZM

- Cure latency maintains minimum viscosity during reflow
- Low CTE (<30 ppm/°C), High Tg (>120°C), intermediate modulus (5-8 GPa) maximize reliability in die to organic substrate design; CTE may be less critical for die-die assembly

Viscosity of GEN 1 and fit with Bonding Cycle

- Viscosity profile at 10°C/min shows minimum viscosity typically on the order of 10³-10⁴ Pa-s, with rapid curing above 160°C
- Thermo-compression bond cycle occurs over a range of ~10 s
- Hold period allows bump to penetrate NCF and contact bonding pad

Evaluation of GEN-1 NCF – Test Vehicle I

Test Vehicle I			
Silicon Die			
Die size, mm	7.3 x 7.3		
Die thickness, µm	100		
I/O count	1048 (mixed perimeter/area)		
Cu pillar diameter, µm	50		
Cu pillar height, µm	25		
Solder cap	Sn/Ag		
Solder height, µm	15		
Bump pitch, µm	80 (perimeter), 300 (center)		
Organic Substrate			
Substrate thickness, mm	0.356		
Cu pad diameter, µm	50		
Cu pad height, µm	12		
Cu pad finish	OSP		
Solder mask	Taiyo PSR 4000 AUS 703		

TV-I contains a 25 area arrays and 2 peripheral chains

Vacuum Lamination

	<u> </u>
Parameter	Value
Diaphragm Position	
Upper /Lower Temp (°C)	neridian.allenpre
Vacuum Time (sec)	30 ss.com/in
Pressure Time (sec)	30 haps-confe
Pressure (MPa)	0.5 cs./a

Thermal Profile For Bonding TV-I

- 'Hold' stage is one parameter to be optimized to allow bumps to penetrate NCF and reach bond pad prior to reflow
- Solder reflow occurs under fixed bond head pressure.
- Temperature variation during bonding can be mapped to ensure all parts of the die exceed the reflow temperature

001203

Bonding Results with TV-I

Test Vehicle II

Test Vehicle II Parameters			
Silicon Die			
Die size, mm	10.2>	(10.2	
Die thickness, µm	50	00	
I/O count	36,000 (single	e daisy chain)	
Cu pillar diameter, µm	25		
Cu pillar height, µm	25		
Solder cap	Sn/Ag		
Solder height, µm	5		
Bump pitch, µm	55		
Silicon Substrates	Pedestal Pad	Flat Pad	
Substrate thickness, µm	500	500	
Cu Pad finish	Ni/Au	Ni/Au	
Cu pad diameter, µm	30	25	
Pad height, µm	25µm Cu/ 2µm	1µm Cu/ 1µm	
	Ni/ 0.5µm Au	Ni/ 0.5µm Au	
Dielectric	Polymer	PE TEOS	

Lamination and Bonding Profile For TV-II

Lamination Parameter	Value
Film thickness	20 µm
Vacuum time	30 s
Pressure time	60 s
Pressure	0.5 MPa
Temperature	75 °C

NCF is 3-5 um above solder cap

Lamination conditions chosen to minimize NCF layer above solder cap Varied bonding force (100N, 200N, 300N, 400N)

Bump Cross-section of GEN 1 NCF on TV-II

100 N Bonding Force

400 N Bonding Force

At 36,000 I/O, high viscosity of GEN-1 NCF prevents pillar – pad contact

GEN-2 NCF Development for High I/O

GEN-2 NCF: Material Properties

	Units	GEN-1	GEN-2
Minimum Melt Viscosity	Pa-s	31,000	1
Cure Onset Temp (DSC)	°C	141	207
Peak Cure Temp	°C	166	250
CTE, α ₁	ppm/°C	28	25
CTE, α2	ppm/°C	120	95
Tg,	°C	122	92
Modulus, DMA, GPa	°C	5.8	7.5

•Key changes (GEN-1 \rightarrow GEN-2)

- Lower viscosity to reduce resistance during bonding
- Delayed cure to increase time for solder wetting

Viscosity Comparison – GEN-1 and GEN-2 NCF

Viscosity of GEN-2 NCF is 4 orders of magnitude lower than GEN-1

001210

GEN-2 NCF has significantly delayed cure onset point

Lamination and Dicing GEN-2 NCF

- NCF resists edge chips and cracks during mechanical blade dicing
- Important to smooth edge flow during bonding

IZM

🗾 Fraunhofer

Lamination Parameter	Value
Vacuum time	30 s
Pressure time	60 s
Pressure	0.2 MPa
Temperature	70 C
	MAPS

Downloaded from http://meridian.allenpress.com/imaps-conferences/article-pdf/2016/DPC/001192/226293/2016dpc-wp12.pdf by guest on 03 January 2023

Bonding Profile for GEN-2

- Higher temperature used in pre-heat stage
- Force ramp initiated slightly earlier

IZM

🗾 Fraunhofer

Pre-Heat Optimization – GEN2				
Force, N	400	400	400	400
Head Temp, °C	180	170	150	140
Stage Temp, °C	100	100	100	100
Exposure time, s	5	5	5	5
Flow	+++	++	ОК	-

Actual Bond Profile

Bonding Results for GEN-2 NCF on TV-II

SEI MAG: 1250x HV: 15kV WD: 7.1mm

- SEM shows good joint formation with uniform filler distribution
- EDS spectrum shows no silica entrapment
- Significantly increased voiding detected relative to GEN-1
 - Viscosity adjustment and use of optimized processing (including use of pressure curing) to be applied

Si EDS and Element Spectrum of bonded Joint

Initial e-test validation – GEN-2 NCF

Preconditioning

MSL 3A60°C/60% RH/40h

3x 260C reflow

Die Number	Diced Initial, Oh	Diced 40h 60°C/60% RH	Diced 3x Reflow (260°C)
	R (Ohms)	R (Ohms)	R (Ohms)
1	8.11E+02	8.13E+02	8.13E+02
2	7.73E+02	7.49E+02	7.54E+02
3	7.94E_02	7.88E+02	7.82E+02
4	7.41E+02	7.49E+02	7.77E+02

Target resistance for TV-II, 850 Ohms met for all die \rightarrow TCT test and analysis

NCF with Increased Thermal Conductivity (GEN-3)

Substituting Conductive Fillers for Silica Thermal Conductivity

- Other ceramic fillers, like silica, can be readily dispersed in film composites
- Loading levels sufficient to achieve > 4 W/mK form films that can be laminated with conventional temperature and pressure
- Drawbacks are reduced transparency, bonding (filler entrapment), and possibly reliability (high modulus)

001216

Fraunhofer

IZM

Downloaded from http://meridian.allenpress.com/imaps-conference

e-pdf/2016/DPC/001192/2262993/2016dpc-wp12.pdf by guest on 03 January 2022

Joint Inspection of Bonded Copper Pillar

Test Vehicle I - Bonding Force 90 N creates solder-pad contact.

- Intermetallic region is irregular
- Alumina (73 vol %) visible in solder/pad interface

IMAPS 12th International Conference and Exhibition on Device Packaging Issues with Ceramic-Filled NCF, cont'd – Transparency

• Lamination T = 70-90 C

🗾 Fraunhofer

- High conductivity must be achieved with reduced filler content,
- Focus on resin matrix and interaction with filler interface

Summary

- NCF technology for area array die with fine pitch perimeter
 - Good joint formation
 - Minimal voiding with good fillet on 100 um die
 - Good reliability
- GEN-2 High I/O
 - Good joint formation with no detection of filler entrapment
 - Final modifications underway
- GEN-3 High Thermal Conductivity
 - Films > 4 W/mK
 - Conventional lamination temperature (70-90C)
 - Material development aimed at maintaining TC with reduced filler content

Acknowledgements

The authors would like to thank the following individuals for their significant contributions to this work:

- Jeffrey Weber, and Jenna Cordero of Dow Advanced Packaging Technologies in Marlborough, MA, U.S.A.
- Diana Deese and Chris Todd of Dow Chemical Co. in Midland, MI, U.S.A.

Thank You

®[™] Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.

