Preserving Nb Superconductivity in Thin-Film Superconducting Flexible Cables

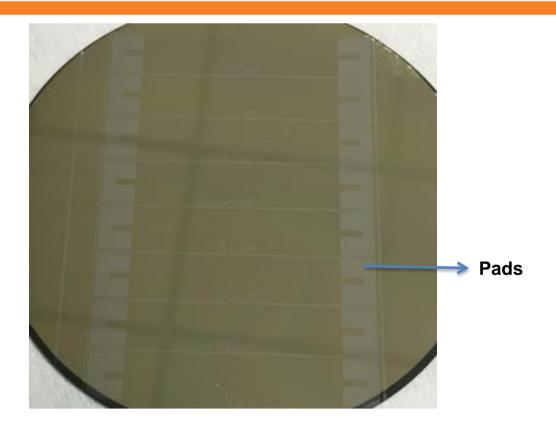
Vaibhav Gupta*, John A. Sellers*, Charles D. Ellis*, Simin Zou*, George A. Hernandez*, Rujun Bai*, Yang Cao*, David B.

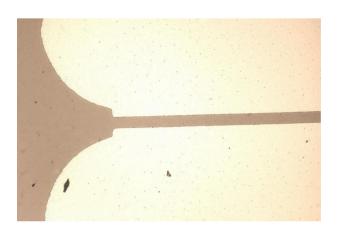
Tuckerman† and Michael C. Hamilton*

SAMUEL GINN
COLLEGE OF ENGINEERING

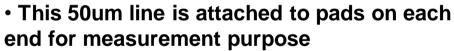
03/17/2016

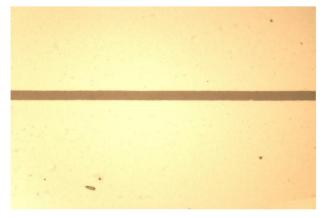
- Problem statement
- Proposed solution
- Test structure
- Stack ups
- Measurement setup
- Test results
- Future work
- Questions

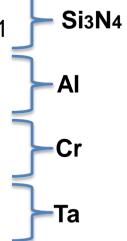

AUBURN


Problem statement

- Reduction in transition temperature (T_c) after polyimide (PI-2611) is cured on top of Niobium (Nb).
- Nb sponge like behavior leads to it being eaten away during polyimide cure
- Curing of PI-2611 at 350 °C leads to diffusion of oxygen, hydrogen, or other degrading materials into the thin Nb films.
- Possible solution: Capping layer in between Nb and Pl and alternate polymer (Asahi Glass AL-X 2010)
 with lower curing temperature.


SAMUEL GINN
COLLEGE OF ENGINEERING


Test structure


50um line (zoomed in)

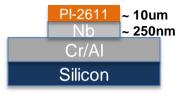
Stack ups

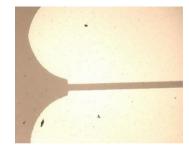
Below are the stack ups tested:

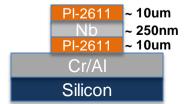
- Cr/Al/Nb/PI-2611
- Cr/Al/Pl/Nb/Pl-2611
- Cr/Al/Ti/Nb/PI-2611
- SiO2/Nb
- SiO2/PI-2611/Nb
- SiO2/Nb/Si3N4
- SiO2/Nb/Si3N4/PI-2611
- SiO2/Nb/Al
- SiO2/Nb/Al/PI-2611
- SiO2/Nb/Cr
- SiO2/Nb/Cr/PI-2611
- SiO2/Nb/Ta
- SiO2/Nb/Ta/PI-2611

Al, Cr and Ta were E-beam evaporated and Nb was DC sputter deposited in a vacuum chamber

Measurement Setup

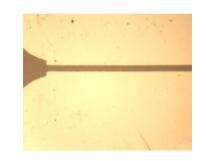

- Transition temperature measurements were carried out in either Liquid Helium (LHe) dewar or pulse-tube (PT) cryostat.
- A sample holder was used to mount the sample.
- 4-point probing method was used for testing to achieve precise resistance measurement.

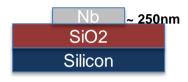

College of Engineering


Test results of PI-2611 cured on top of Nb

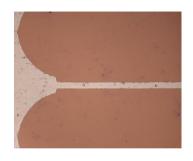
- All samples were fabricated on Cr/Al release layer
- Measurements were done in LHe Dewar
- PI-2611 was cured at 350°C
- None of the samples transitioned

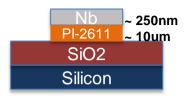
Temperature (K)	Resistance (Ω)
R.T.	0.90
4.2K	0.37


Temperature (K)	Resistance (KΩ)
R.T.	4.18
4.2K	3.49

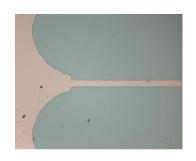

COLLEGE OF ENGINEERING

Temperature (K)	Resistance (Ω)
R.T.	2.37
4.2K ₀₀	2081 1.29

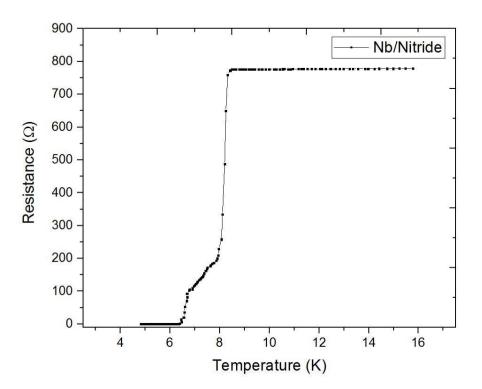



SiO₂/Nb and SiO₂/PI-2611/Nb

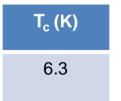
- Measurement were taken in a LHe Dewar
- The sample had fully transitioned when measured at 4.2K

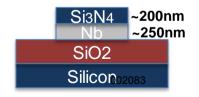


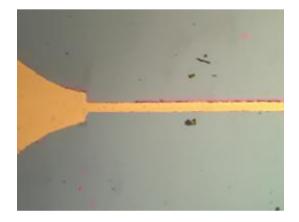
Temperature (K)	Resistance (KΩ)
R.T.	2.1
4.2K	0



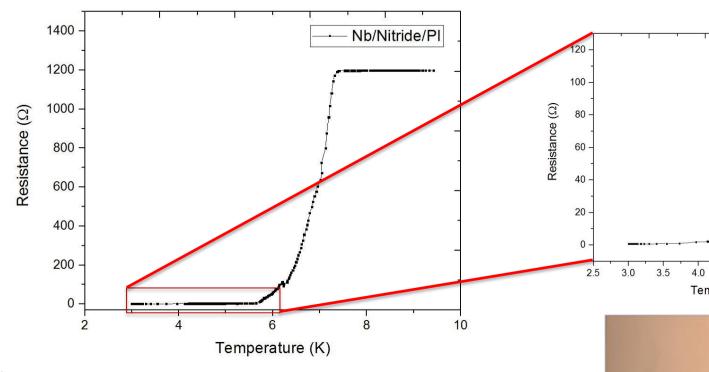
Temperature (K)	Resistance (KΩ)
R.T.	2.3
4.2K	0



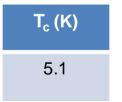

SiO₂/Nb/Si₃N₄



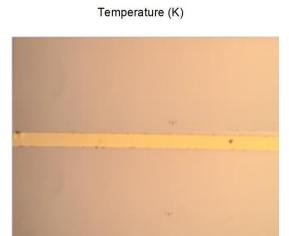
- Thickness of Silicon nitride (PECVD) is approximately 200nm
- Nitride processing time is for 1 min at 300°C



Nb (250 nm) / Si₃N₄ (200 nm)


from http://meridian.allenpress.com/imaps-conferences/article-pdf/2016/DPC/002075/2262910/2016dpc-tha32.pdf by guest on 03 January 2023

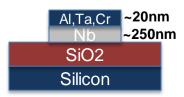
SiO₂/Nb/Si₃N₄/PI-2611

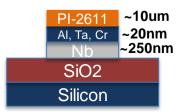


- Slower transition was observed on the sample with cured polyimide on top
- Deposition temperature of Silicon Nitride was 30°C

4.5

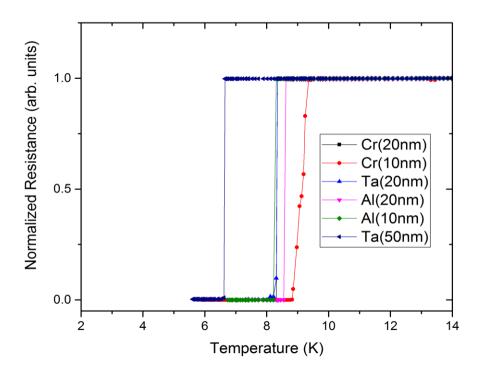
5.0

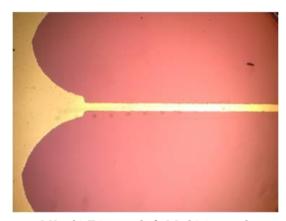

5.5


6.0

Nb (250 nm) / Si₃N₄ (200 nm) / PI-2611 (10μm)

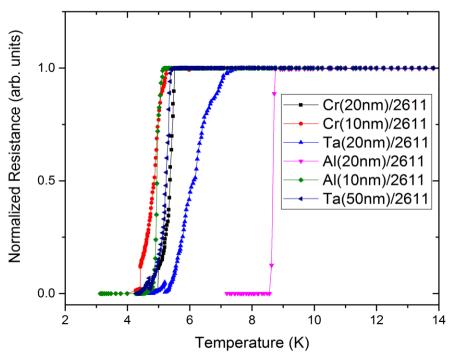
from http://meridian.allenpress.com/imaps-conferences/article-pdf/2016/DPC/002075/2262910/2016dpc-tha32.pdf by guest on 03 January 2023


T_c Comparison for Capping layer AI, Cr and Ta



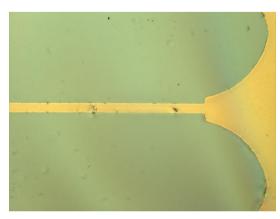
- Capping layer on top of Nb with no polymer overcoat
- · Different metal thickness were tested
- 10 nm of Cr and 20 nm of Al exhibited the highest T_c values

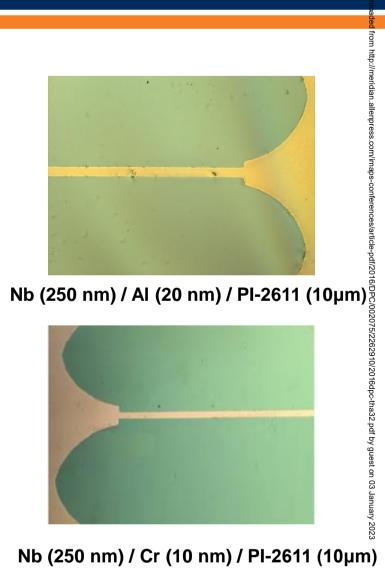
Nb (250 nm) / Al (10 nm)



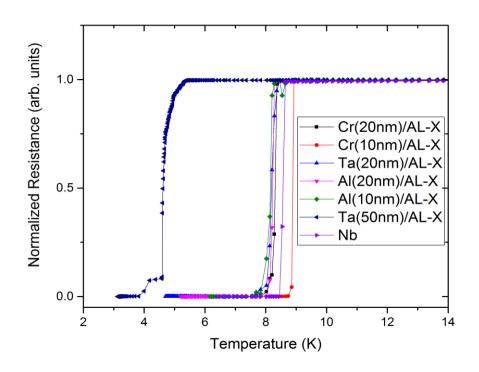
Nb (250 nm) / Cr (10 nm)

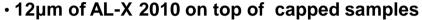
COLLEGE OF ENGINEERING


from http://meridian.allenpress.com/imaps-conferences/article-pdf/2016/DPC/002075/2262910/2016dpc-tha32.pdf by guest on 03 January 2023

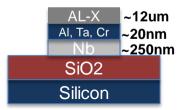

Capping layer/PI-2611

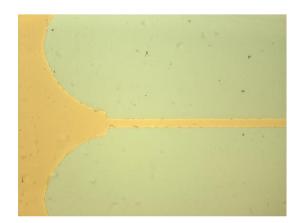
- 10µm of PI-2611 on top of capped samples
- PI-2611 was cured at 350°C in N₂
- Significant degradation in T_c can be seen

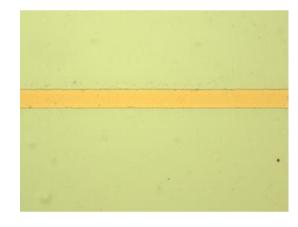




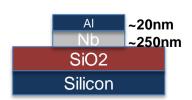
Nb (250 nm) / Cr (10 nm) / PI-2611 (10μm)


Capping layer/AL-X 2010



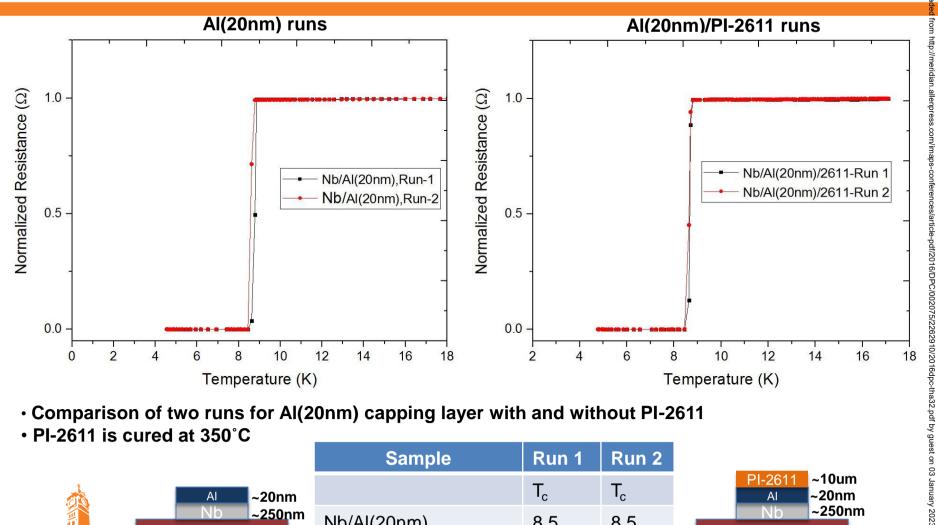


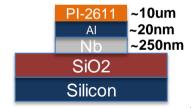
- AL-X 2010 was cured at 190°C in N₂
- All capping layers exhibited minimal degradation

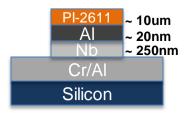


Nb (250 nm) / Al (20 nm) / AL-X 2010 (12 mm)

from http://meridian.allenpress.com/imaps-conferences/article-pdf/2016/DPC/002075/2262910/2016dpc-tha32.pdf by guest on 03 Jai

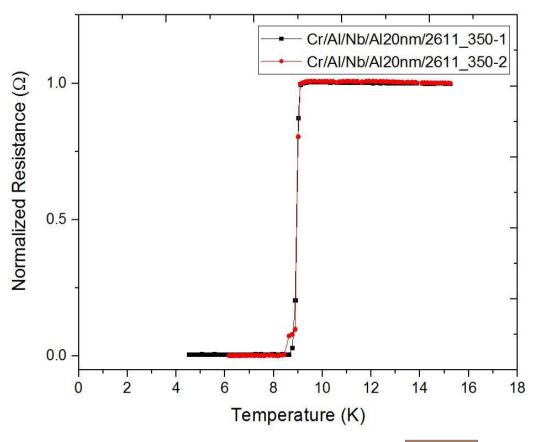

Al(20nm), Run 1 and Run 2 Comparison


Comparison for Al(20nm) different runs

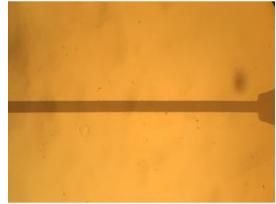

- Comparison of two runs for Al(20nm) capping layer with and without PI-2611
- PI-2611 is cured at 350°C

ale.		
	F	Al ~20nm
		√b ~250nm
AUBURN	Si	O2
UNIVERSITY	Sili	icon

Sample	Run 1	Run 2
	T _c	T _c
Nb/Al(20nm)	8.5	8.5
Nb/Al(20nm)/2611	8.4	8.4



Nb/Al(20nm)/PI-2611@350C on Cr/Al release layer



Cr/Al/Nb/Al(20nm)/2611 cured at 350°C

Sample	T _c
Sample1	8.7
Sample 2	8.6

Nb (250 nm) / Al (20 nm) / Pl-2611(10µm) 🖁

from http://meridian.allenpress.com/imaps-conferences/article-pdf/2016/DPC/002075/2262910/2016dpc-tha32.pdf by guest on 03 Ja

Conclusion

- Multiple material stack up have been tested with a goal to protect Nb superconductivity
- Al(20nm) substantially prevented degradation of Nb traces by acting as a combination of diffusion barrier, oxygen getter and strain buffer.
- Low temp. cure cycle polymer (Asahi Glass AL-X 2010) is protective of Nb superconductivity.

Future work

- Evaluation of alternate polymers with lower recommended curing temperatures
- Testing different curing temperatures for these various polymers
- Embedded structures

College of Engineering