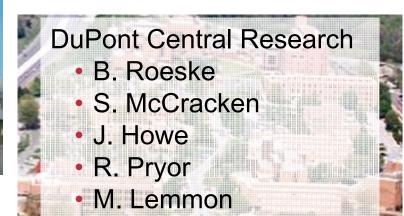
Using Permanent and Temporary Polyimide Adhesives in 3D-TSV Processing To Avoid Thin Wafer Handling

Presentation to
6th International Conference on Device Packaging
March 9, 2010

M. P. Zussman and C. Milasincic – HD MicroSystems
A. Rardin, S. Kirk and T. Itabashi – DuPont Wafer Level Packaging

Acknowledgments

- HDMicroSystems
 Japan
 D. Kawasaki
 K. Soejima
- DuPont EKC


 C. Tse
- Tamarack Scientific

 M. Souter

 M. Gingerella

Development and characterization of polyimide adhesives is a global and multifunctional effort

3D TSV Process Sequences – Applications for Adhesives

Process Type	"Step 1"	"Step 2"	"Step 3"
A - Vias first	TSV (FEOL, BEOL,PACK)	Handle (TA), thin, backside process	B2F Bond (Mtl)
B – Vias first	TSV (FEOL, BEOL,PACK)	F2F bond (MtI)	Thin, backside process
C – Vias last	F2F bond (Mtl, SiO, PA)	Thin	TSV back, backside process
D – Vias first	Handle (TA), thin	TSV back, backside process	B2F bond (Mtl)
E – Vias last	Handle (TA), thin	B2F bond (PA)	TSV front, backside process

Table based on Refs. 1 & 2

Temporary adhesives used in conjunction with handler or carrier wafers – <u>HD-3007</u>

Permanent adhesives complement Mtl bonding – HD-7010

MtI = metal to metal bonding

SiO = SiO_2 to SiO_2 bonding

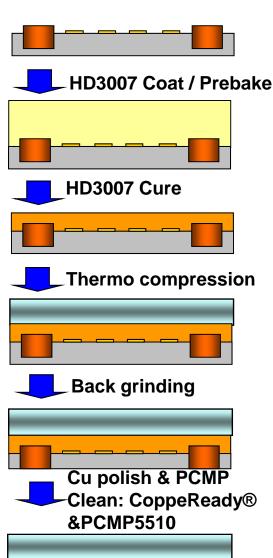
TA = temporary adhesive bonding

PA = permanent adhesive bonding

^{2.} J.-Q. Lu, "3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems", Proc. IEEE 97(1), 2009

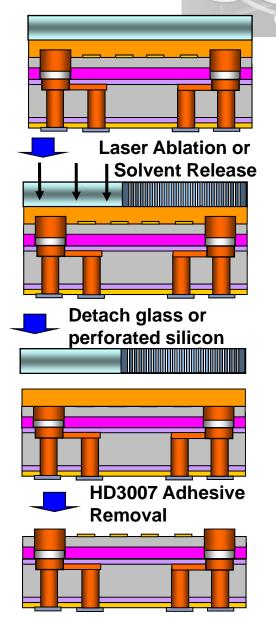
^{1.} P.Garrou, "3D IC Integration: An Emerging System Level Integration Architecture", 3D Integration & Packaging Roadshow, 2008

3D TSV Process Flow using Polyimide Adhesives to Avoid Thin Wafer Handling


Wafer Level Packaging

Fan Out


Bumping


Downloa

conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023

P-TEOS Depo & Etch.

led from http://meridian.allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023

HD-3007 Temporary Adhesive

Introduction to HD-3007 Temporary Adhesive

HD-3007 is a spin-applied liquid designed for use as a temporary adhesive

- Application: Wafer-to-wafer and die-to-wafer adhesive
- Thermal cure converts HD-3007 to a thermoplastic polyimide
- HD-3007 is not photosensitive
- Formulation in BLO/PGMEA (Note: formulation in NMP called HD-3003 X1)

General process sequence for HD-3007

- Apply to substrate wafer by spin coating, soft-bake to dry film
- Cure (oven or hotplate)
- Bond to carrier wafer
- Process wafer for TSV (backgrinding, via formation, other backside processing, bonding, etc)
- De-bond carrier wafer from product and clean residual HD-3007

allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023.

HD-3007 Typical properties and process

TSV	Bonding	3D
RDL	Wafer Level Packaging	M
	Fan Out	Bumping

Property/Condition	Units	HD-3007	
Liquid Viscosity	Ps	9-11	
Non-volatile Contents	%	24-26	
Cure Temp Range	°C	250-350	
Bonding Temp Range	°C	300-350	
Bonding Pressure	N/cm ²	>14-22	
Contact time	minutes	1-10*	
Cured Dielectric Thickness	μm	2-10	
Glass Transition Temp (Tg)	°C	180	
Weight loss @ 350C	%	0.2	
CTE	ppm/ °C	50	
Dielectric Constant	Z	3.4	
Tensile Strength	MPa	130	
Modulus	GPa	3.3	

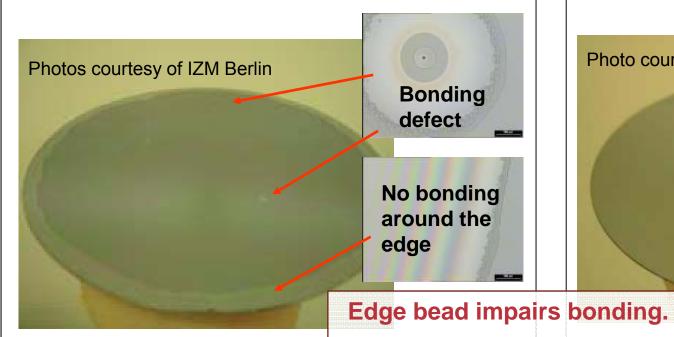
- * Bond times dependent on bonding temperature and adhesive thicknesses used
 - Thicker adhesive layers will bond faster
 - Thinner adhesive layers will bond slower

allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023,

HD-3007 Temporary Adhesive : Wafer-to-Wafer Bonding

W2W Bonding of HD3007 – Process Definition

Poor Result


Cure Temp: 350 °C

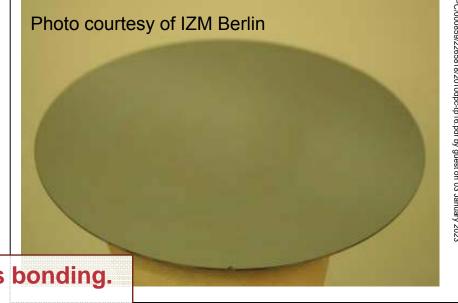
Adhesive thickness: 4 µm

Bond Temp: 200 °C

Pressure: 14.5 N/cm²

Bonding Time: 35 min

Good Result


• Cure Temp: 350 °C

• Adhesive thickness: 8 µm

Bond Temp: 300 °C

• Pressure: 22 N/cm²

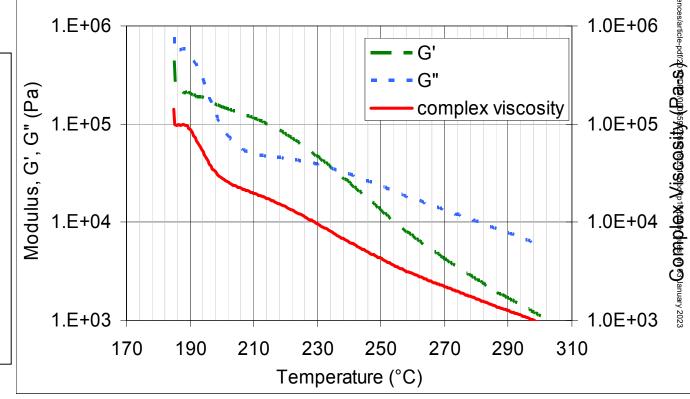
Bonding Time: 1 min

Flow required for good result

W2W Bonding Requires Adhesive Flow

Flow determined by the rheology of the adhesive under bonding conditions

Melt viscosity has strong temperature dependence

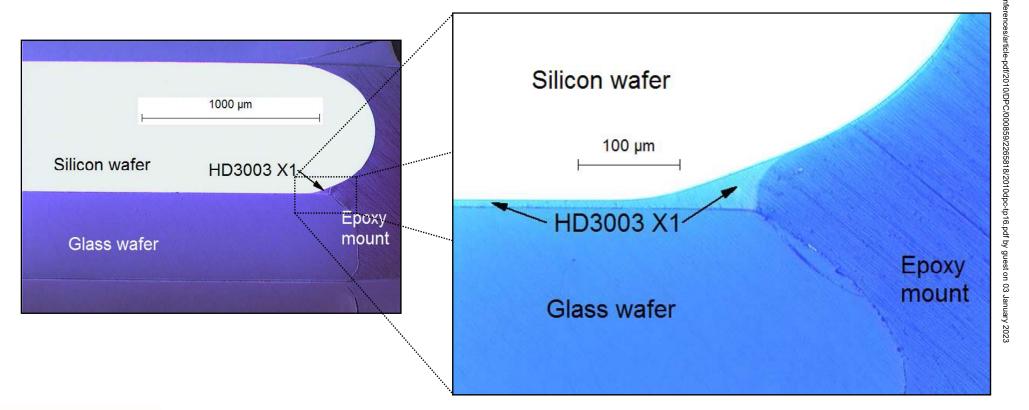

Viscosity falls 2 orders of magnitude from 190 to 300°C

G' – Storage modulus: in-phase response

- G" Loss modulus: outof-phase response
- Complex Viscosity :

$$\eta^* = \sqrt{\left(\frac{G}{\omega}\right)^2 + \left(\frac{G'}{\omega}\right)^2}$$

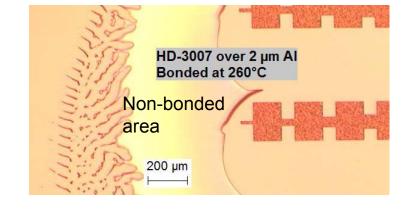
Melt Rheology of HD-3003 X1



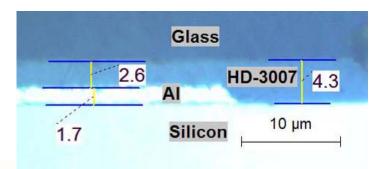
Adhesive Characterization – Edge Flow

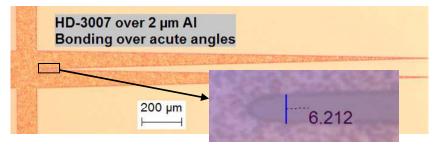
Flow during bonding is needed to coat over topography, and bond the edge bead region

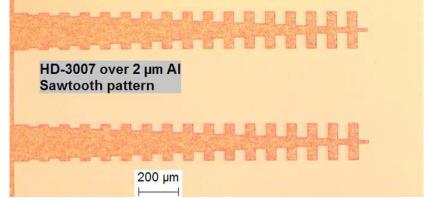
Flow at wafer edge is also critical to protect wafer during back-grinding


e-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023

Bonding of HD-3007 Coated over Topography


HD-3007 coated over 2 µm Aluminum topography, then cured @290°C


Bonding at 260°C is incomplete – non bonded areas adjacent to patterned areas



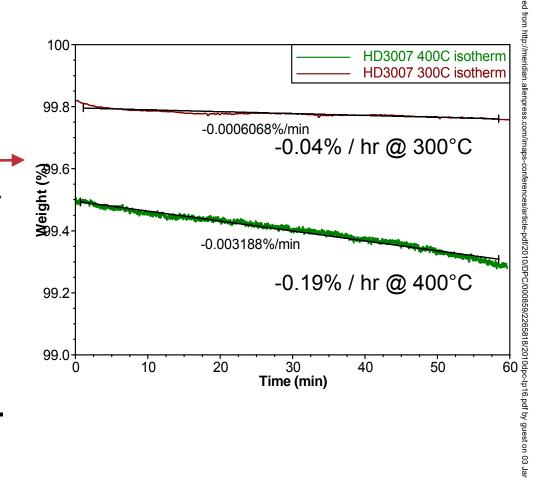
Bonding at 350°C is complete

- No voids seen when bonding over fine features
- Cross-section shows conformal coating over topography

allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023.

HD-3007 Temporary Adhesive : Thermal Performance

HD-3007 Polyimide has High Thermal Stability



1% Weight loss temperature is >520°C (@10°C/min, in air or N₂)

Isothermal weight loss is slow, linear process _____

Thermal stability of HD-3007 higher than reported values for BCB, epoxy, and other polyimide adhesives (Ref. 4,5,6)

Use of HD-3007 is compatible with processes up to 400°C – e.g. M2M bonding, annealing, PI for RDL, etc.

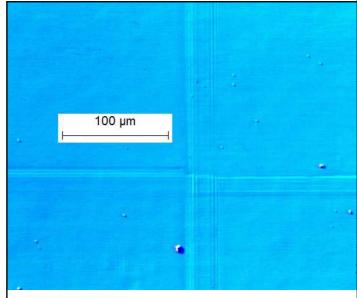
- 4. http://www.dow.com/PublishedLiterature/dh_0055/0901b803800550e7.pdf?filepath=cyclotene/pdfs/noreg/618-00200.pdf&fromPage=GetDoc
- 5. http://www.microchem.com/products/pdf/SU-8-table-of-properties.pdf
- 6. J. Hermanowski, "Thin wafer handling Study of temporary wafer bonding materials and processes", 2009 IEEE International Conference on 3D System Integration, 3DIC 2009, art. no. 5306550

allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023.

HD-3007 Temporary Adhesive: Release Methods

Laser Release of HD-3007

Laser release demonstrated with 248 and 308 nm excimer lasers


Irradiation @ 248 nm through glass carrier ablates HD-3007 within 0.2 µm of the glass surface

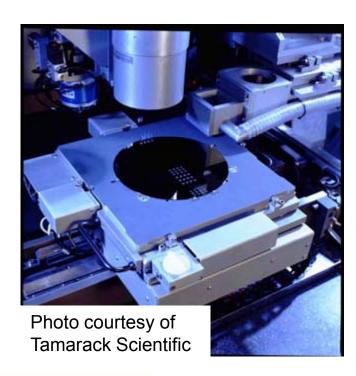
- 500 µm thick, Borofloat glass carrier wafers
- Slight residue remains on glass carrier
- Most of the HD-3007 remains on the silicon wafer.

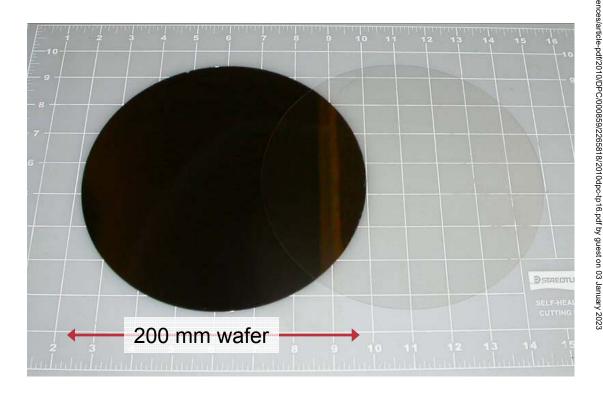
De-bonding occurs with a single pulse

- Throughput depends on beam size and pulse frequency
- De-bonding fluence is affected by carrier thickness due to light absorbed by the carrier
- Commercial laser de-bonders are under development

HD-3007 residue on carrier after laser de-bonding

De-bonding with a 248 nm laser, 6.5 mm² spot size. Residue on the carrier from overlap of stepand-repeat laser pulsing

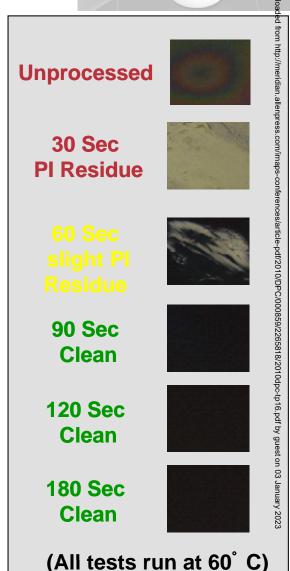



Laser de-bonding of Thinned Wafer from Glass Carrier

De-bonded glass carrier and 50 µm thinned silicon wafer Laser de-bonding performed at Tamarack Scientific

- De-bonded at 248 nm, single pass, 30 s de-bond time
- Very little residue on glass wafer

Solvent Cleaning: EKC865[™] Selective Adhesive Remover for HD-3007

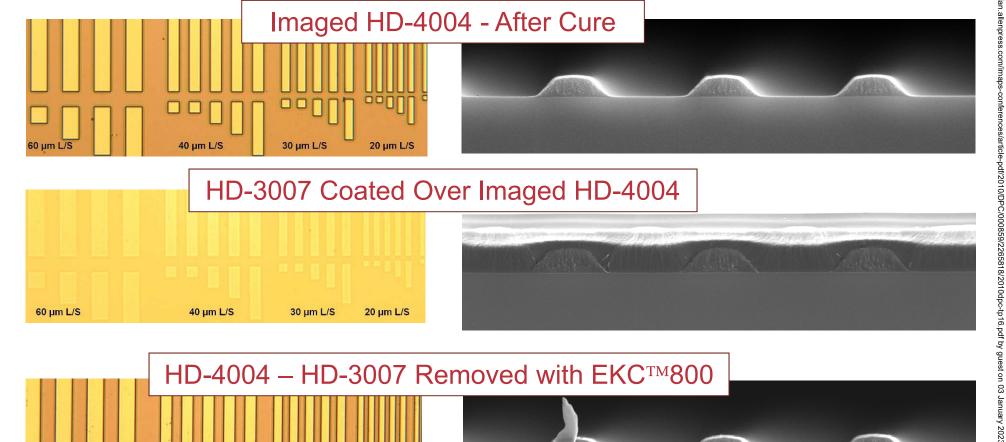

Wafer Level Packaging Fan Out

Test Wafer Process Conditions

- HD-3007 thickness = 8µm (4µm standard thickness)
- Cured at 290° C, bonded at 300° C
- De-bonded via laser ablation
- Additional pieces of silicon wafer coated with HD-4100 (blanket and patterned) and cured at 350° C were also tested for compatibility

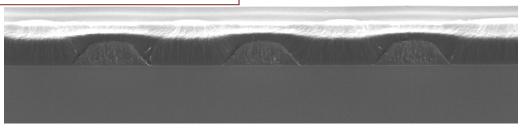
Cleaning Results

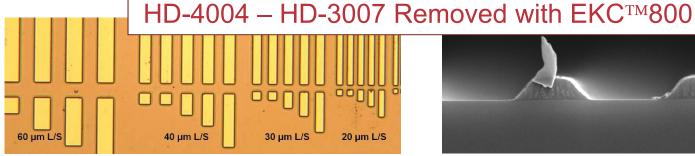
- Rapid Cleaning at 60° C for a time of 60 -180 seconds
- Compatible with HD-4100 cured at 350° C
 - Tested at 60° C for 30min with no attack to HD-4001
- Excellent Compatibility to Sensitive Metal Films
 - Aluminum, Copper, Titanium, Nickel, Chrome, Tungsten, & other Metal Alloys
- Chemistry can be re-circulated in a closed loop system
- Water rinse-able
- Can be utilized in both automated and manual wet cleaning equipment platforms

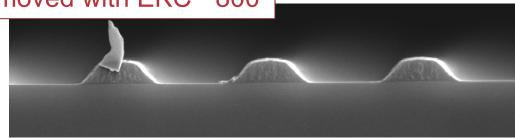


Cleaning of HD-3007 over Topography




Top View - 60, 40, 30 & 20 µm L/S


Cross-Section – 6 µm L/S



HD-3007 Coated Over Imaged HD-4004

Solvent De-Bonding of HD-3007

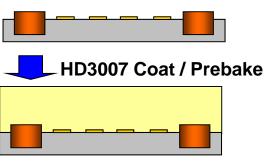
Since HD-3007 after cure and bonding is still soluble in selected solvents, solvent de-bonding is possible

Perforated carrier is required so solvent can attack the bond

Experiments are underway to define a solvent de-bonding process

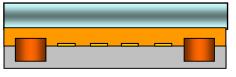
allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023.

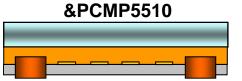
Permanent Polyimide Adhesive: HD-7010

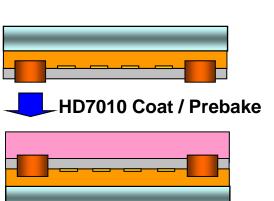

-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023

3D TSV Process Flow using Polyimide Adhesives to Avoid Thin Wafer Handling

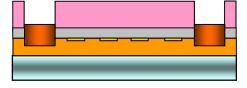
Bumping

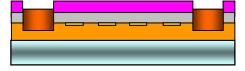

Fan Out

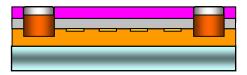


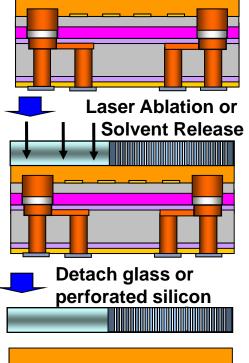


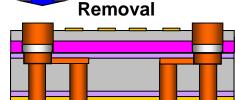
Back grinding




P-TEOS Depo & Etch.






Sn Plating

Thermo compression to Sub.

ticle-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023

Introduction to HD-7010 Permanent Adhesive

HD-7010 is a spin-applied liquid designed for use as a permanent adhesive and for RDL

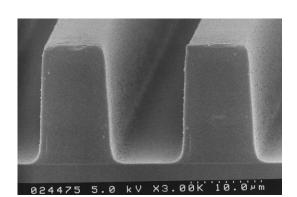
- Solvent developed, negative tone photodefinable polyimide precursor
- Application: Die-to-die, die-to-wafer and wafer-to-wafer bonding
- HD-7010 is copper compatible no corrosion when cured over Cu features

General process sequence for HD-7010

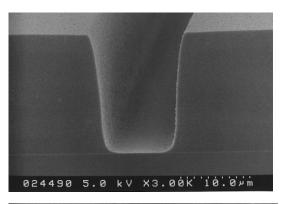
- Apply to wafer by spin coating, soft-bake to dry film
- UV expose, then remove un-exposed film with solvent developer
- Cure (oven cure recommended)
- Bond to second substrate (die or wafer)
- Repeat process to complete 3D build

allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023,

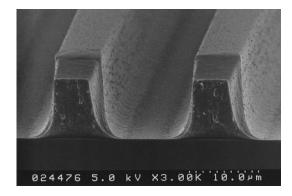
HD-7010: Typical properties and process


Property/Condition	Units	HD-7010	
Liquid Viscosity	Ps	27 - 33	
Non-volatile Contents	%	35 - 40	
Exposure	mJ/cm2, BB	130 - 150	
Developer / Rinse		CP / PGMEA	
Cure Temp Range	°C	250 - 400	
Bonding Temp Range	°C	250 - 350	
Bonding Press	N/cm2	14 - 22	
Contact time	minutes	5 - 10	
Cured Dielectric Thickness	microns	8 - 20	
Glass Transition Temp	°C	250	
5% Weight loss Temp.	°C	395	
CTE	ppm	74	
Dielectric Constant	Z	3.3	
Tensile Strength	Мра	173	
Modulus	Gpa	2.6	
Elongation	%	70	

Photopatterning of HD-7010: Exposure with I-line Stepper

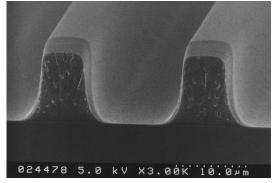


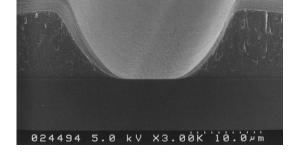
Pattern After Dev. Dev.=PA400D Rinse=PA400R



L/S=10um/10um

L/S=40um/10um


350deg.C Cured



024491 5.0 kV X3.00K 10.0 im

Film thickness: 10 µm cured

400deg.C Cured

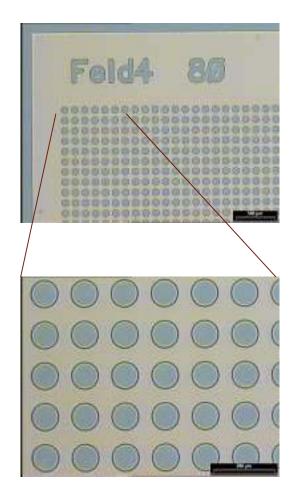
allenpress.com/imaps-conferences/article-pdf/2010/DPC/000859/2265818/2010dpc-tp16.pdf by guest on 03 January 2023

HD-7010: Effect of Cure Temperature on Mechanical and Thermal Properties

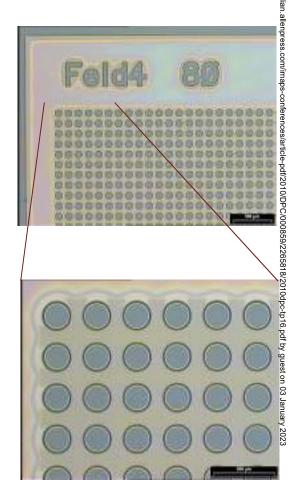
Cure Condition	Tensile Strength (MPa)	Elongation (%)	Modulus (GPa)	Residual Stress (MPa)	CTE (ppm/°C)	Tg (°C)	5% Loss (°C)
350C / 1 hr	173	67	2.60	29.8	74	252	398
320 C / 1 hr	175	79	2.47	27.6	97	234	344
300 C / 1 hr	209	73	2.55	28.4	99	232	335
250 C / 2 hr	174	69	2.33	-	132	216	330
250 C / 1.5 hr	159	62	2.44	-	182	213	325
250 C / 1 hr	143	66	2.37	24.5	245	207	326

Mechanical properties show little dependence on cure temperature Thermal properties and CTE are cure temperature dependent

W2W Bonding of HD7010 at Lower Temperature and Pressure


Photo-patterned HD-7010 has crowning around features

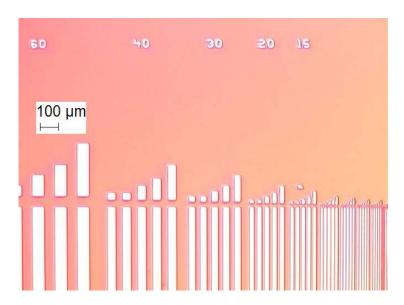
Recommended process for low pressure bonding:

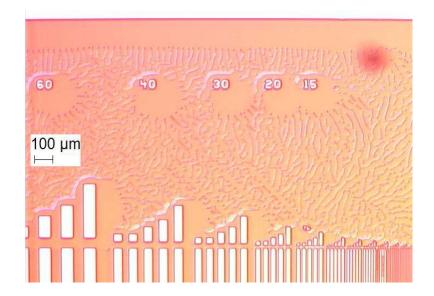

- Cure at 250°C
- Planarize surface (remove crowning) by CMP
- Bond at 250 300°C
- Pressure ≥22 N/cm²

HD-7010 has low flow after cure

CMP before bond

No CMP before bond


Bonding of HD-7010 at Higher Pressure and Temperature



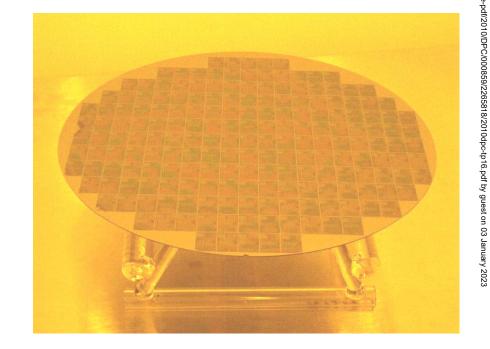
Imaged HD-7010 films on 200 mm wafers

Wafers were bonded to glass carriers at Süss MicroTec

- Bonded at 350°C, 30 kN, 10 min contact time (no CMP)
- Most of the HD-7010 was bonded well to the glass carrier

- Some areas of the wafer showed incomplete bonding
- Follow-up experiments required to improve uniformity

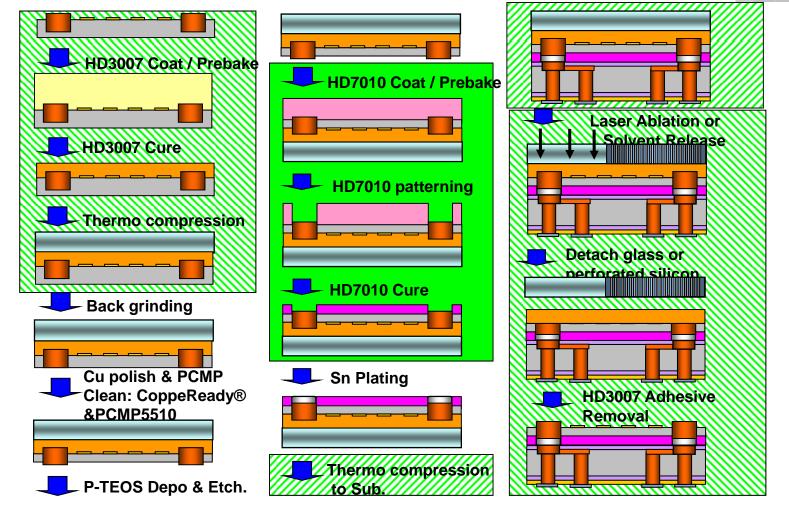
Process Integration: HD-7010 on Thin Silicon



Substrate: 50 µm wafer bonded with HD-3007 to glass carrier HD-7010 was coated onto backside, imaged and cured at 350°C

Frontside view: glass carrier bonded with HD-3007

Backside view: imaged HD-7010 on thin wafer



Summary of Demonstrated Process Steps

Key:

HD-3007 only

HD-7010 only

HD-3007 with HD-7010

Conclusions

HD-3007 Temporary adhesive

- Superior thermal stability
- Excellent mechanical properties and adhesion
- Rapidly de-bonded with laser irradiation
- Soluble after cure in selective solvents

HD-7010 Permanent adhesive

- Photo-imageable polyimide adhesive
- Compatible with Cu and other metallurgy
- Bonding characterized by high adhesion and low flow

Future work focused on process integration

- Demonstrate compatibility of polyimide adhesives throughout the TSV assembly process
- Work with other parts of the supply chain to provide a system solution

Thank you for your attention!

