

Reliability and Performance Improvement of 3D System-in-Packages in Fan-Out Wafer Level Packaging

Scott Hayes, Tony Gong, Doug Mitchell, Michael Vincent, Jason Wright, Yap Weng Foong Freescale Inc.

Freescale, the Freescale logo, AlliVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, 1 he Energy Efficient Solutions logo, mobiled: PowerOUICC, Oorlo, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Edg. U.S. Pat. & Tim. Off. Beekif, Beeklack, ColdFire, CorreNet, Flexis, Kinelis, MXC, Platform in a Package, Processor Expert, Oorlo Converge, Oorlova, OuliCC Engine, SMARTMOS, TurboLink, VoriOa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.

Outline

SiP/3D Packaging

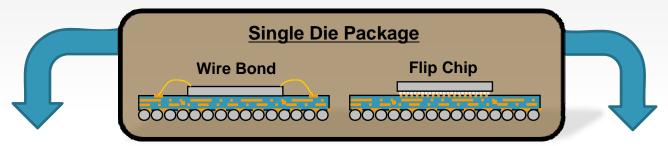
- Motivation
- Current SiP approaches and 3D enablers

SiP in Fan-out Wafer Level Packaging

- The Redistributed Chip Package (RCP) Technology
- SiPs in RCP
- Critical RCP SiP Structures

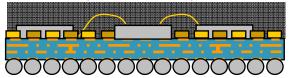
The RCP Through Package Via (TPV)

- Process and Reliability
- Electrical Characteristics

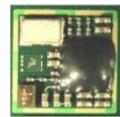


System in Package (SiP) Motivations

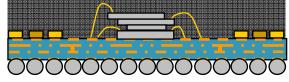
- Performance
 - Die/system performance improvements
- Size/Volumetric Efficiency
 - Smaller footprint, thinner packages
- Heterogenous Integration
 - Die of different nodes/thickness, SMT, discrete components, MEMS...
- Differentiating Solutions
 - SiPs increase opportunity/accessibility for unique systems



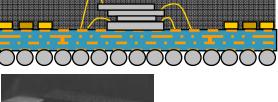
Standard Package and SiP Approaches


Multi-Chip Modules

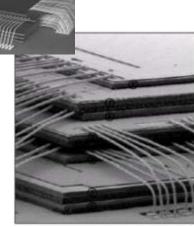
(WB, FC, SMD)


-Agilent

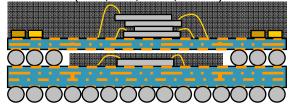
-Freescale


Stacked Die

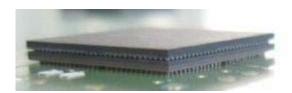
(WB, FC, SMD)



-STATSChipPAC


-Toshiba

-ECN


Package on Package

(WB, FC, TSV, SMD)

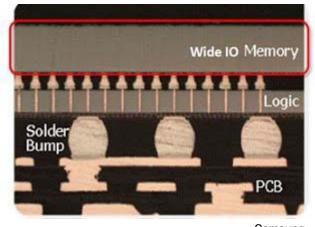
-STATSChipPAC

-ESCATEC

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.

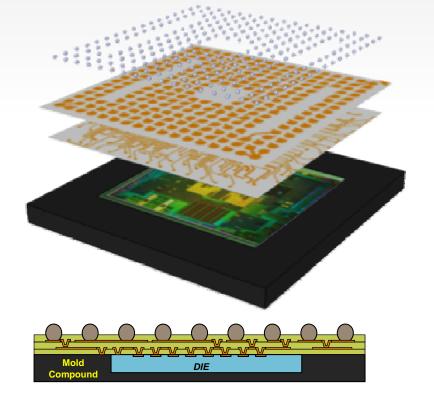

Some Additional SiP/3D Technologies

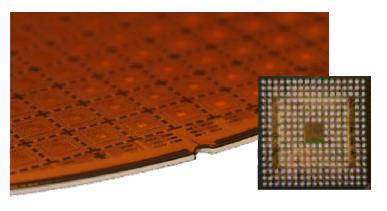

Double Sided Flex


-Starkey

Embedded Substrates

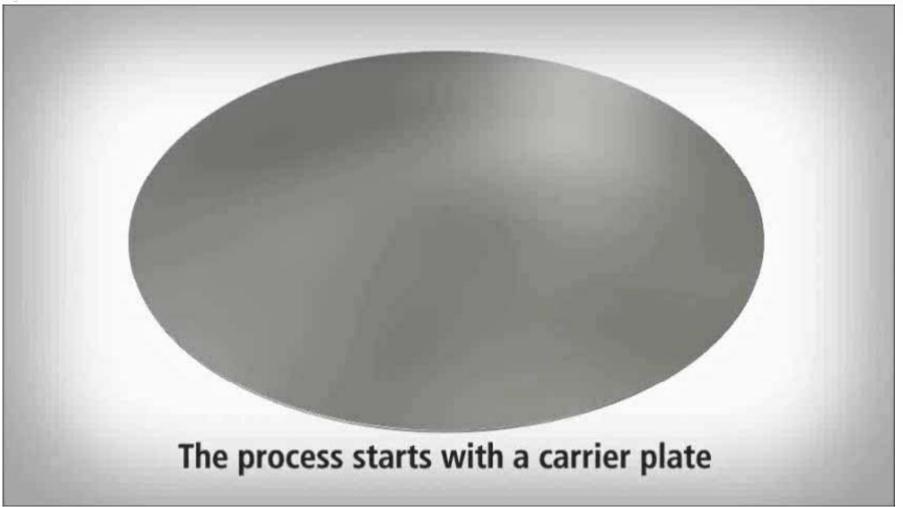
TSV/Si Interposer

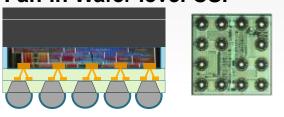


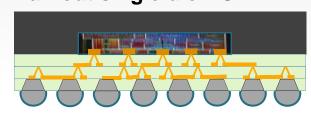

-Samsung

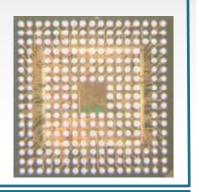
Freescale Redistributed Chip Packaging (RCP)

- Freescale proprietary technology.
- Scalable, fan-out chip scale package.
- A technology solution for:
 - Small form factor packages
 - High performance.
 - Multi-die, heterogeneous integration.
- 2D, 3D System in Package (SiP) solution.
- Key Applications
 - Medical
 - Defense
 - Migrate to Consumer, Industrial & Auto

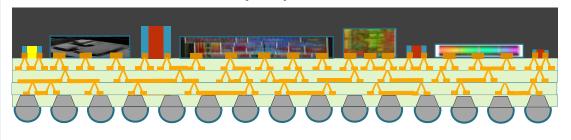



Freescale's Redistributed Chip Package (RCP)

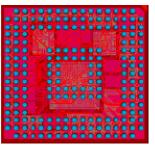


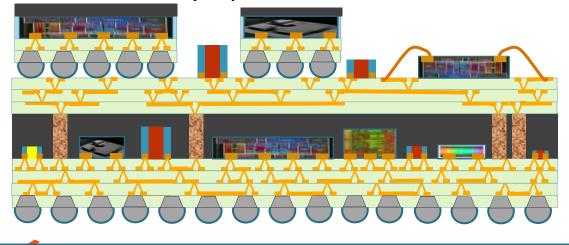

Fan in vs. RCP Fan out packaging

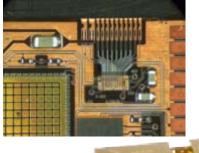
Fan-in Wafer level CSP

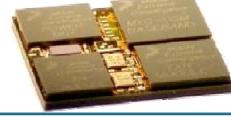



Fan-out single die RCP




Fan-out multi die RCP (SiP)



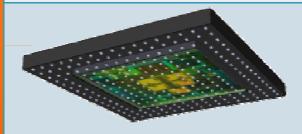


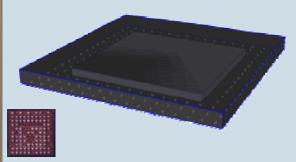
Fan-out 3D RCP (SiP)

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, OorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Beeklit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, OorlQ Onverge, Corivva, QUICC Engine, SMARTMOS, Turbotlink, VortiQa and Xtinnsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.

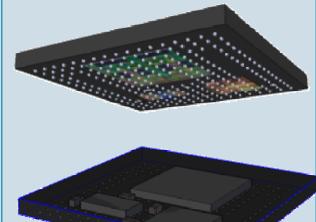
RCP and RCP SiP Manufacturing

Single Die Package

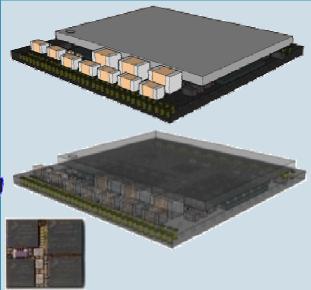

XY: pkg. size: die size + 0.5mm + Z: Low profile ~ 125-760µm


2D Multi-die Package

XY: Fine die-die spacing rules
Z: Low profile ~ 125-760μm
Embedded components


3D System-in-Package

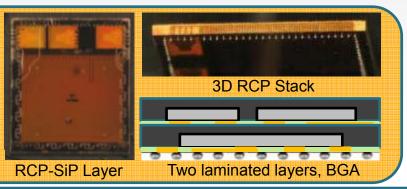
XY: Fine die-die spacing rules Z : SMT dependent



Prototypes: Now

• Production: Q2'13

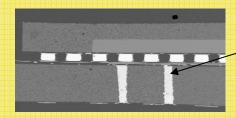
Prototypes: Now

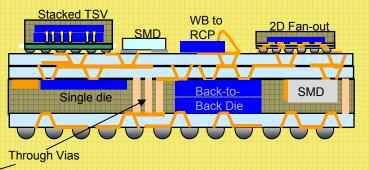

Production: Q4'13

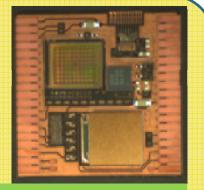
Methods of Achieving 3D in RCP

Stacking

- Edge connections
- Very thin
- Routing constraints




Pre-placed vias


- Lower cost
- Good use as PoP solution
- Simplified process
- Limited double sided build up

Through package vias

- Minimal routing constraints
- Double sided buildup
- •Use of RCP as a 'PCB'
- Most flexible solution

PPV with Solder Bal

Enables 3D SiP solutions for unique medical, defense and consumer applications

RCP SiP/3D Integration

Integrated Elements

Processor, uController, PMIC, ASIC

RF (baseband, transceiver)

FET, IGBT, RGT, SCR

Film Battery

Memory (DDR, Flash, SDRAM)

MEMS (accelerometer)

IPD, SMD (R, L, C)

Oscillator

mmWave (Tx-PA, Rx, VCO)

Thin Film Resistors

Shielding, Thermal management

Demonstrated Applications/Constructions

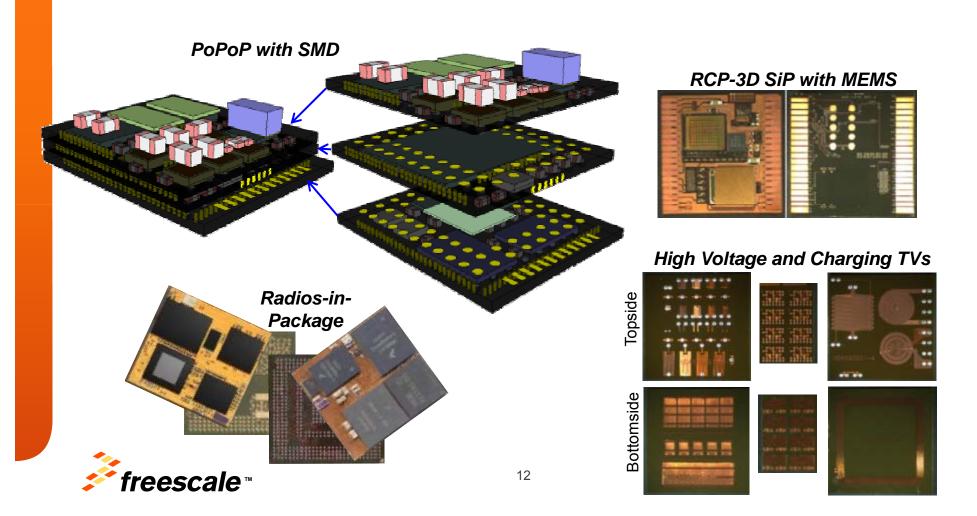
Low Voltage applications

High Voltage applications (~1kV)

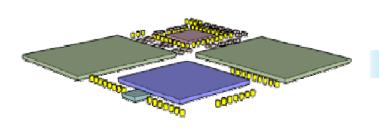
Single Die, 2D Multi-die, 3D SiP, Stacked SiP packages.

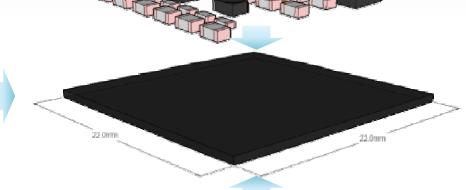
BGA, micro-BGA, Flex connectors, wirebond.

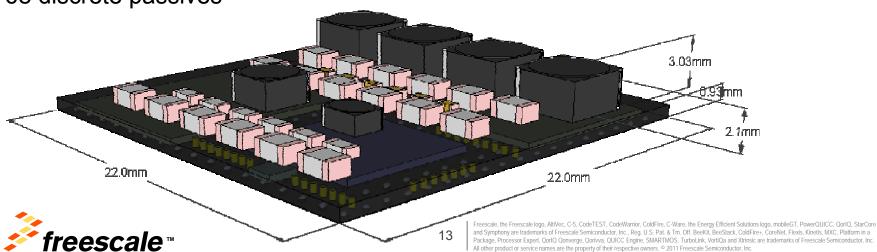
Ultra thin packages

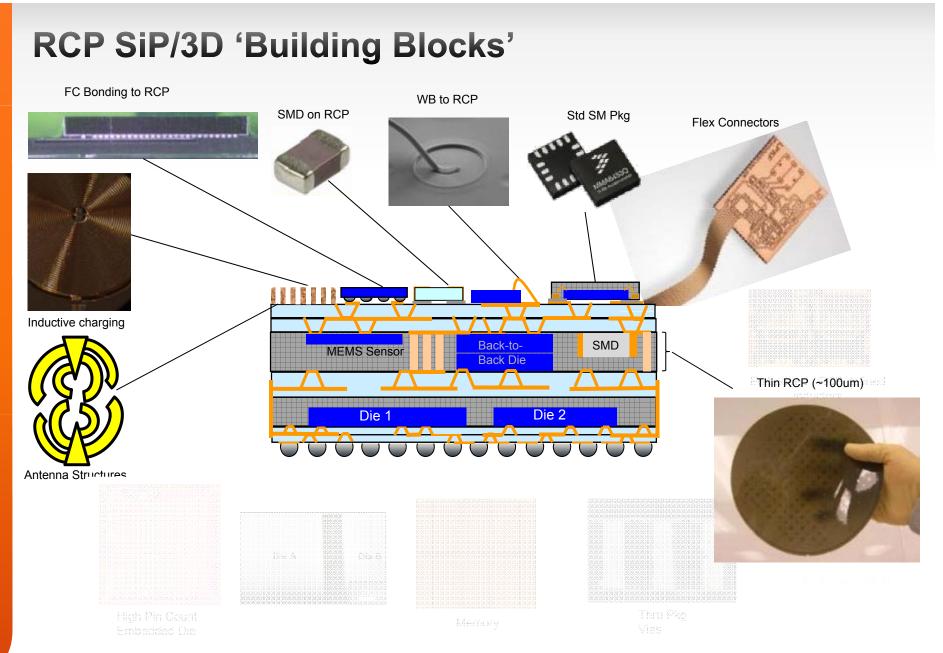

High density packages (>100 units in BoM)

Contactless, remote functions


A Few Applications Enabled by RCP TPVs


- Applications include TPVs and double sided build up.
- SiP BoM counts range from 2 to >100.
- Common systems include processor, memory, ASIC, MEMS, discretes.


Example 3D RCP SiP using TPV

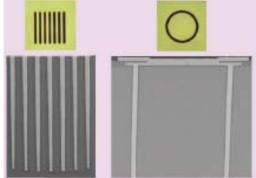


Components including in SiP:

- Freescale MCU, PMIC, Memory die (5 die total)
- 68 discrete passives

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S., Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, Oorl Q Converge, Oorlwa, QUICC Engine, SMARTMOS, Turbolink, Vortica and Kirissic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.

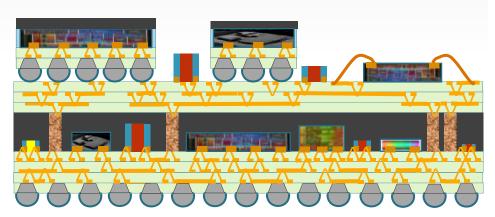
RCP SiP/3D 'Building Blocks' **Embedded Sensors** Multiple layers of signal routing including power, ground, and signal isolation M1 M2 M3 M4 Ultra Thin Pkg Stacking with Side Connections **SMD MEMS Sensor** Embedded, RCP defined inductors Die 2 Die 1 (unitmun) 0.15 max. in thickness Die A Die B Embedded SMD Through Package Vias **High Pin Count** Memory Embedded Die



Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U. S. Pat. & Tm. Off, BeeKit, BeeStack, ColdFire-, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorlQ Qonverge, Qorivva, QUICC Engine, SMARTIMOS, TurboLink, VortiQa and Ktrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.

TSV and TPV: Complementary 3D Enablers

Through Silicon Via


Die #3 - Die #4 Die #2 - Die #5 Die #5 Silicon interposer SiP Substrate Circuit board -EETimes

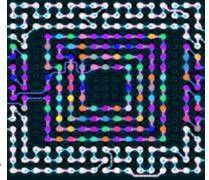
-P.S. Andry, et. al., IBM Journal of Research and Development

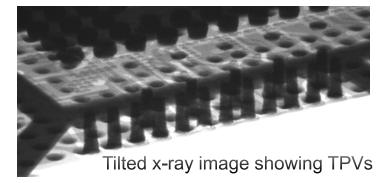
- •Fine geometry possible (~10µm dia)
- High aspect ratio possible (>10:1)
- •Low resistance possible ($<50m\Omega$)
- •Typical uses: 2.5D, 3D-die stacking, high I/O, high bandwidth

Through Package Via

-Freescale

- •Coarse geometry (~100-200µm dia)
- •Lower aspect ratio (3:1 5:1)
- •Low resistance typical ($<50m\Omega$)
- •Typical uses: 3D SiP, true heterogeneous integration

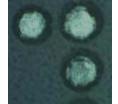



RCP TPV – Reliability Vehicle

3D RCP PoP TV

Test Loops on 3D RCP PoP TV

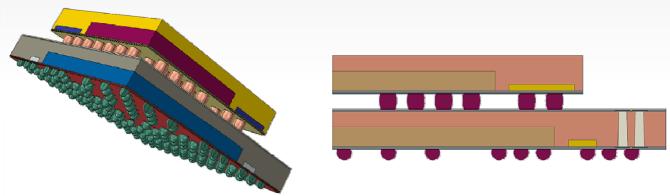
3D RCP PoP Test Vehicle


- •Base Pkg: 12x12mm, P0.4mm, 2ML/1ML Double Sided RCP, TPV
- •Top Pkg: 9x9mm, P0.5 mm, 2ML RCP

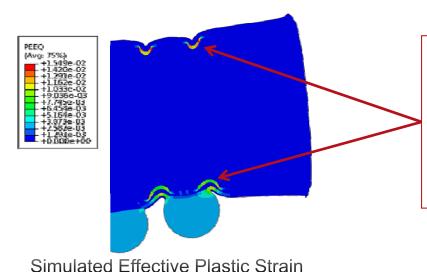
Reliability Plan

- •Pre-con (MSL3/260C)
- •AATC (-40 to 125C)
- •uHAST

JEDEC: JESD22-A104 JEDEC: JESD22-A118



TPVs before optimization

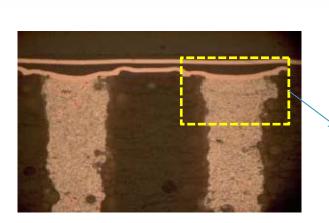


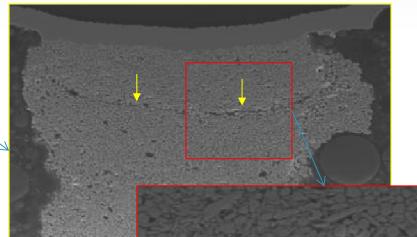
Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Beeklit, BeeSlack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorlQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, Vortica and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. 9 2011 Freescale Semiconductor, Inc.

RCP TPV – Predictive Modeling

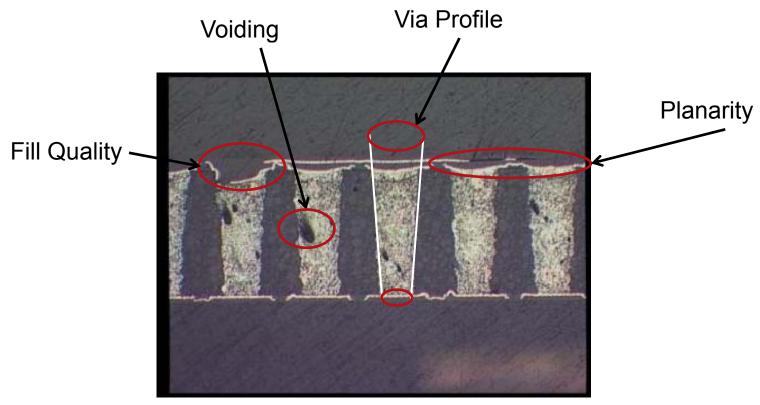
Quarter and cross sectional models used for simulation of thermomechanical behavior of through package via structures

in RCP TPV resulting from AATC


Regions of elevated stress/strain resulting from simulated AATC.

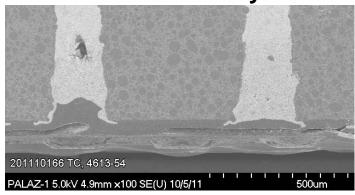

Potential areas of concern through temperature cycling.

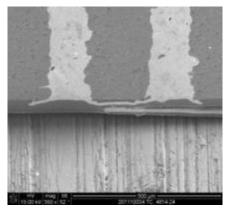
RCP TPV – Reliability Findings



- •Electrical test indicated a failed net after 1000 cycles (-40 to 125C).
- •Cross section and SEM indicated discontinuity within a TPV near a build up interface.
- •Failure noted on 2/80 units.
- •Structural optimization continued.

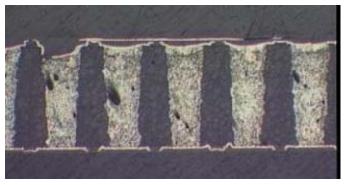
Through Package Via - Challenges

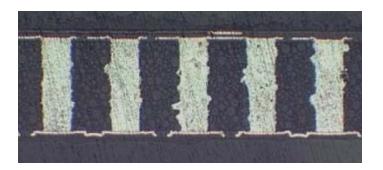

Pre-Optimization TPV



Through Package Via – Structure Optimization

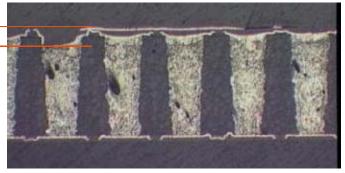
Via Fill Quality

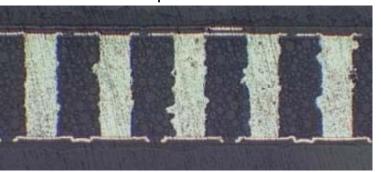

- Voiding
- Incomplete fill


- Improved yields
- More reliable interface

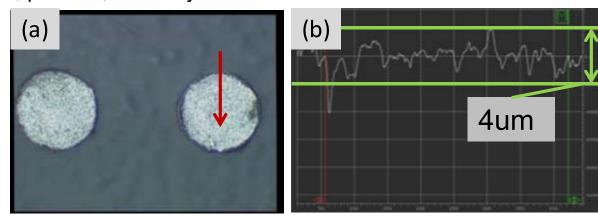
Via Profile

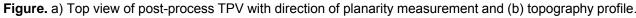
- >50um difference via top to bottom
- •Process implications, variance.


- <25um difference via top to bottom
- •Improved yields, deviation.


RCP TPV – Structure Optimization

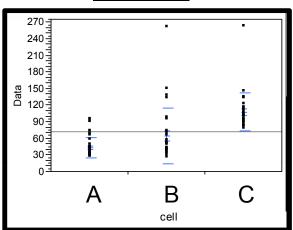
Via Planarity

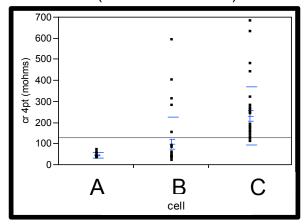

Pre-Optimization



>25um planarity typical, significant varianceYield, process, reliability Post-Optimization

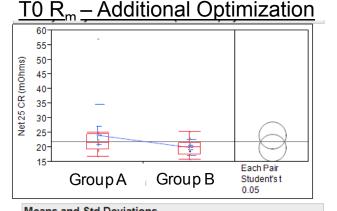
~4um planarity



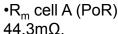


RCP TPV – Electrical Characterization

Time Zero



Post 2000 Cycles
(AATC -40 to 125C)


- • R_m cell A (PoR) 42.8 $m\Omega$.
- •N=30
- •STD~18.1mΩ.

- •No significant increase in TPV resistance.
- •Each net contains 2 vias
- •Typical TPV resistance <25mΩ.

iviean	s and St	d Deviati	ions				
				Std Err			
Level	Number	Mean	Std Dev	Mean	Lower 95%	Upper 95%	
Center	12	24.1750	10.6467	3.0734	17.410	30.940	
Edge	12	20.0083	2.7054	0.7810	18.289	21.727	

•Further optimization of TPV structure shows average net resistances $<25m\Omega$.

- •N=30
- •STD~12.8m Ω .

*Four point probe structure used for measurement

Freescale, the Freescale logo, Allfvec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, OorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Beeklit, BeeSlack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, OorlO Converge, Oorliva, OUICC Engine, SMARTMOS, Turbolink, VoriGa and Xtinsics are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.

RCP TPV - Reliability Results Post-Optimization

- Optimized process yields 99.4%
- Optimized structure surviving AEC Grade 0 (2000AATC, -50°C to 150°C)

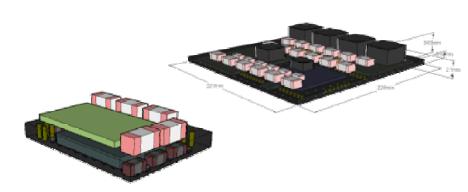
RCP 3D PoP – Reliability Results

	Cell A (-40/125)	MSL3/260	250 cycles	500 cycles	1000 cycles	2000 cycles
	Lots 6160, 6164, 6166	0/40	0/40	0/40	0/40	0/40

	Cell B (-50/150)	MSL3/260	250 cycles	500 cycles	1000 cycles	2000 cycles
	Lots 6160, 6164, 6166	0/40	0/40	0/40	0/40	0/40

\mathbf{q}	Cell C (uHAST,130C/85RH)	MSL3/260	96hrs	144hrs
	Lots 6160, 6164, 6166	0/40	0/40	0/40

JEDEC: JESD22-A104 JEDEC: JESD22-A118



Summary

- 3D RCP with TPV structure demonstrated reliable passing:
 - MSL3 (260°C)
 - 144 hours uHAST (130°C, 85%R.H.)
 - 2000 cycles AATC (-40°C to 125°C)
 - 2000 cycles AATC (-50°C to 150°C) AEC Grade 0

- Average measured TPV net resistance <25mΩ.
- RCP with TPVs enables SiP & 3D packaging solutions for:
 - ✓ Heterogeneous integration
 - ✓ System miniaturization
 - ✓ Enhanced system performance

RCP Contact

Scott Hayes (Development Manager)

s.hayes@freescale.com

480-413-4608

Navjot Chhabra (Program Manager)

navjot.chhabra@freescale.com

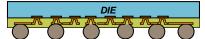
512-895-6470

Tony Gong (Business Development)

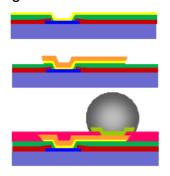
t.gong@freescale.com

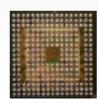
480-413-5325

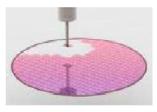
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. Freescale is licensed by EPIC Technologies Inc. to make and sell packages that include Epic's "Chips First" technology and related patents.

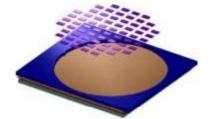

© 2010 Freescale Semiconductor, Inc.

WLCSP vs. RCP


WLCSP


- · Blind assembly directly on a wafer
- Pkg size = die size


- · Build up process based on bumping technology
- Single RDL (Redistribution Layer)
- · Exposed back side and edge of die



- · Wafer reconstitution with KGD
- Space creation to accommodate more IOs and sophisticate routing

- Build up process with "Fan-out" routing
- Multiple RDLs (Redistribution Layer)
- · Physical protection for die