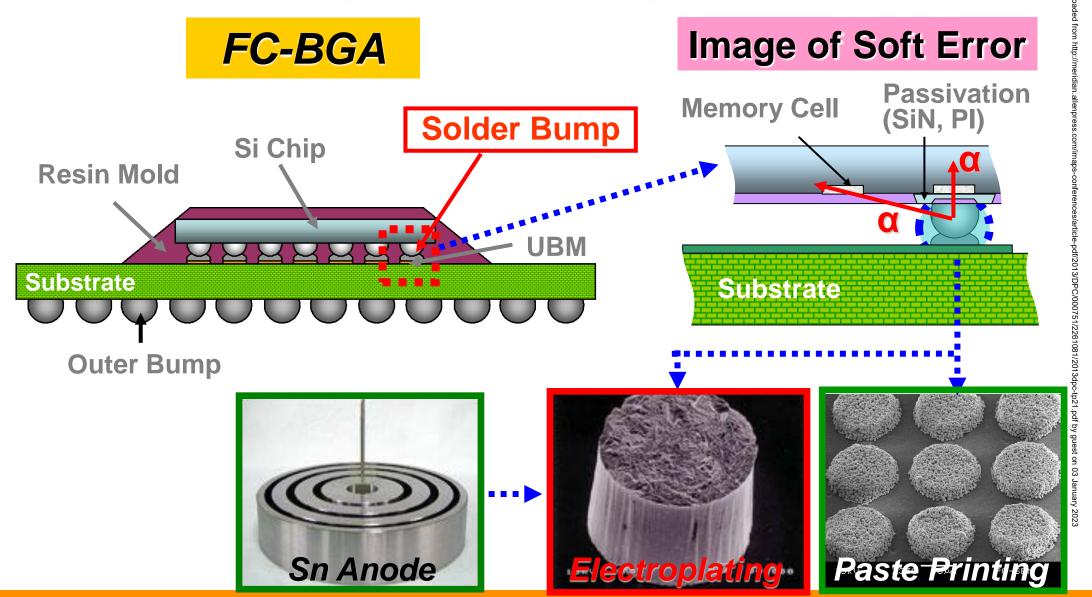


Development of Plating Process for Micro Bump Formation

Takuma Katase, Koji Tastumi, Takeshi Hatta, Masayuki Ishikawa, Akihiro Masuda

Mitsubishi Materials Corporation, Sanda Plant, 12-6, Technopark, Sanda-shi, Hyogo-ken, 669-1339, JAPAN Phone: +81-79-568-2316, E-mail: katase@mmc.co.jp


Contents

- Introduction
- Characteristic Issues for Micro Bump Formation
- Introduction of Cu and Sn-Ag plating chemical
- Example of forming Cu/Sn-Ag micro bump and Cu pillar
- Summary

Introduction

MULOS LO WIMAPS 9th International Conference & Exhibition on Device Packaging March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills, AZ as in Challenge to zero Alpha March 11-14, 2013 Fountain Hills Nov Alpha March 11-14, 2013 Fountain Hills Nov Alpha March

·Main Application:PC (CPU, GPU, Chip-set), Game, Mobile Phone, etc

1MAPS 9th International Conference & Exhibition of Device Packaging March 11-14, 2013 | Fountain Hills, AZ **Technology**

1st generation 2nd generation 3rd generation **MEMS** $DIP \rightarrow SMT$ Peripheral → Area array 3D packaging Hetero junction (実装面積 第4次革命 第3次革命 3次元実装 Mounted Area Wireless Interconnect TCP FC/BGA POP TSV Die Stacking P-BGA(WB) QFP FBGA Stacked SiP 3D-Bare Low Cost / Handheld SCHARAGE DIP SOJ SOP MEMS Devices WL-CSP KGDベアチップ 1980 1990 2000 2020 2010

Reference: JEITA 2009

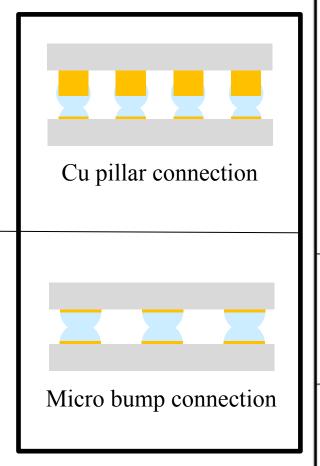
4th generation

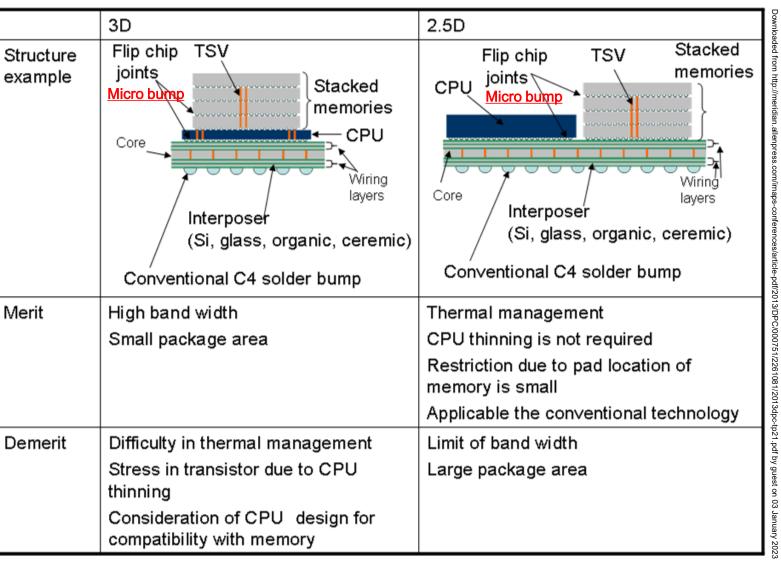
Optical packaging High performance region FC(Flip Chip)technology

for fine pitch

- FC (Solder bump)
- FC (Cu pillar/solder)
- C2C (Si-interposer/solder)

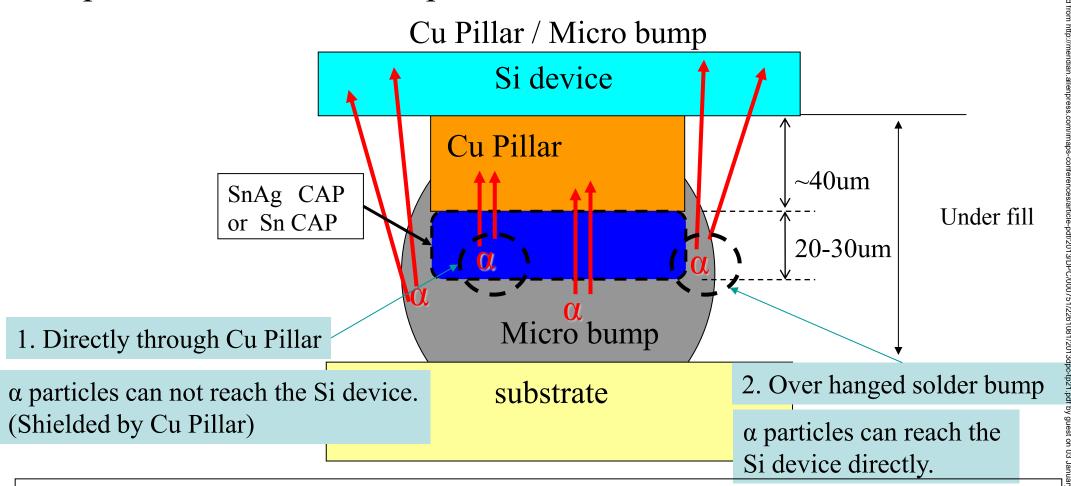
SiP(System in Package) region


- PoP(FC+WB)
- TSV (Trough Silicon Via ··Cu)
- Built-in substrate (passive device/IC)



Importance of Cu and solder bump technology is increasing more and more

MULOS 2.5D and 3D Packaging


Reference: NIKKEI ELECTRONICS 2012.4.16, p.36

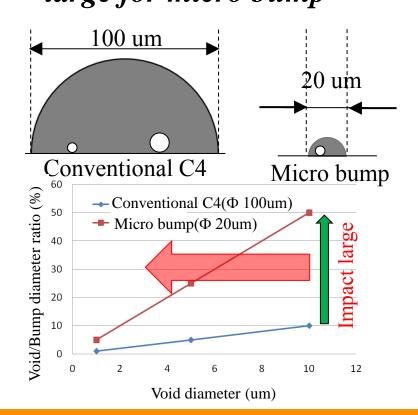
In the case of 2.5D/3D packaging, micro bumps will be applied to the stacked device connection.

Alpha Particulation Permettration Image and Depth into the Si Device

Two penetration roots for α particles.

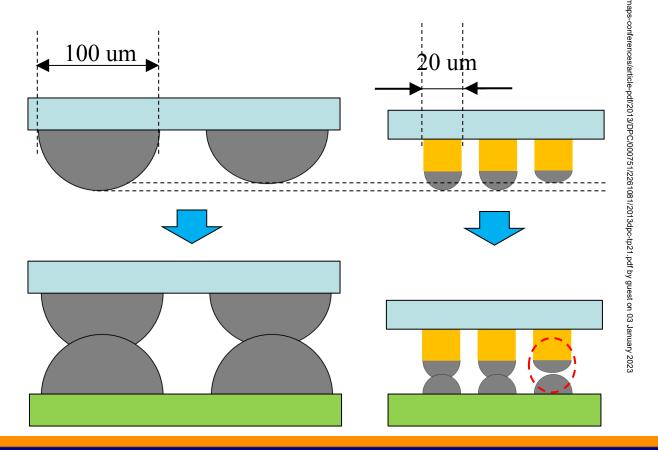
Even if the Cu pillar and/or TSV technology (micro bump connection) become mainstream, the importance of low alpha technology does not change

Characteristic Issues for Micro Bump Formation


IMAPS 9th International Conference & Exhibition on Device Packaging | March 11-14 2013 Fountain Hills, AZ S

Micro Bump

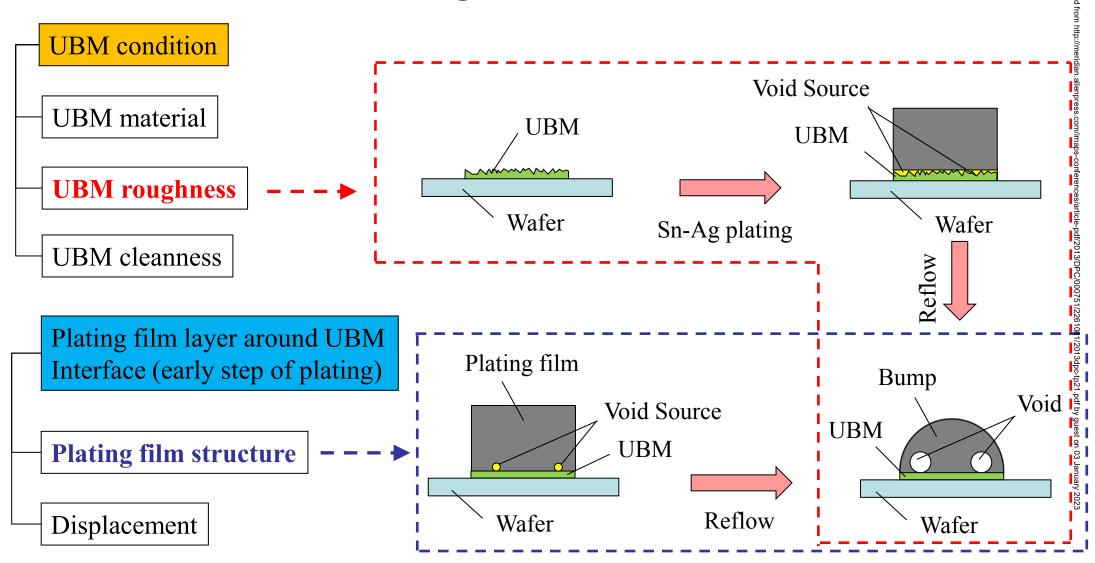
 Due to the small size of micro bump, following items should be considered


-Void generation

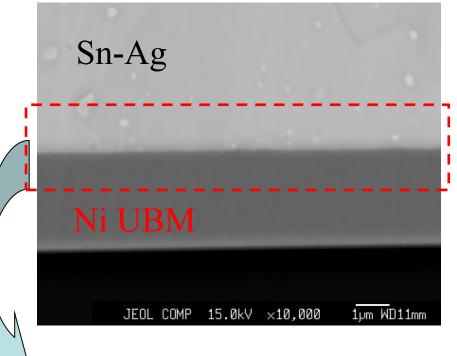
Due to the size effect, the impact of "micro void" become large for micro bump

-Coplanarity

Due to the size effect, excellent coplanarity should be needed

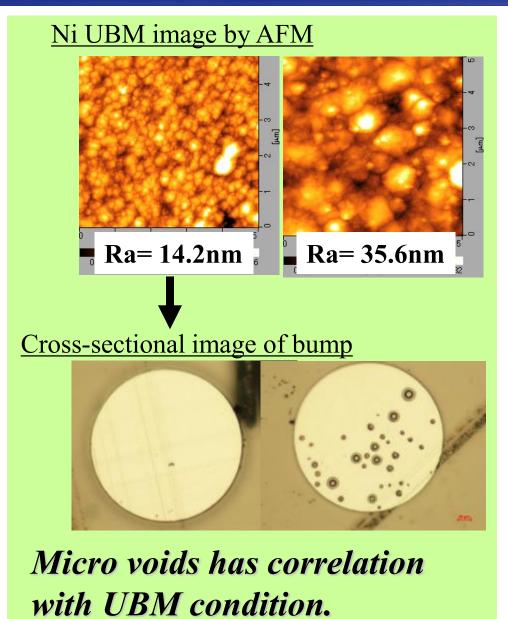


IMAPS 9th International Conference & Exhibition on Device Packaging March 11-14, 2013 | Fountair/ Hills, AZ

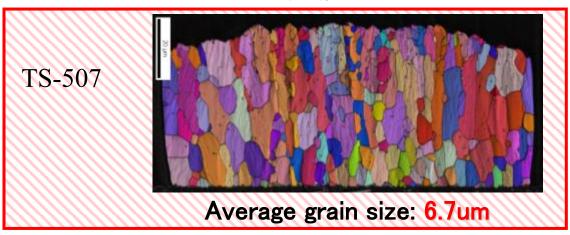

Generagion

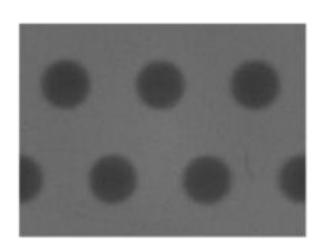
Possible factor of micro void generation

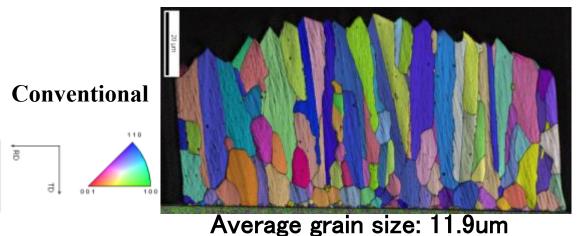
MAPS 9th International Conference & Exhibition on Device Packaging | March 11-14, 2013 | Fountain Hills, AZ

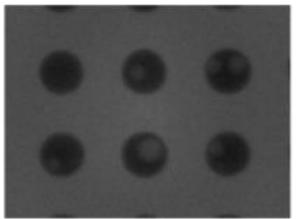

Voids

No micro voids!!

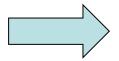

It's important to adjust suitable Ni UBM surface



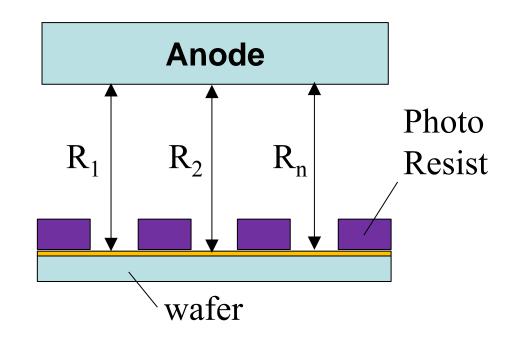



Consideration of Void Generation

15ASD



TS-507


- Fine grain
- Good morphology

TS-507 will achieve the good void performance

Consideration of Coplanality

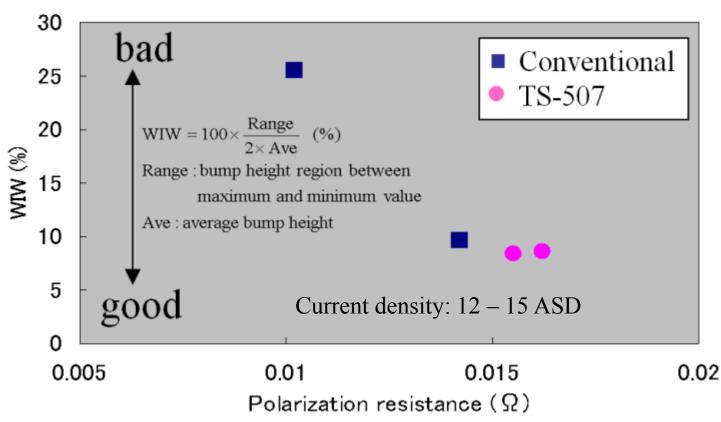
Model of Bump Plating

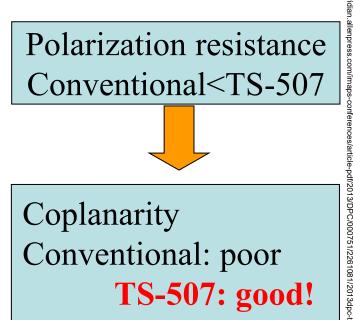
$$I_1 = V/R_1$$
 $I_2 = V/R_2$... $I_n = V/R_n$

Polarization resistance; Rp

$$I_1=V/(R_1+Rp)$$
 ... $I_n=V/(R_n+Rp)$

Relative current density among these bump hole

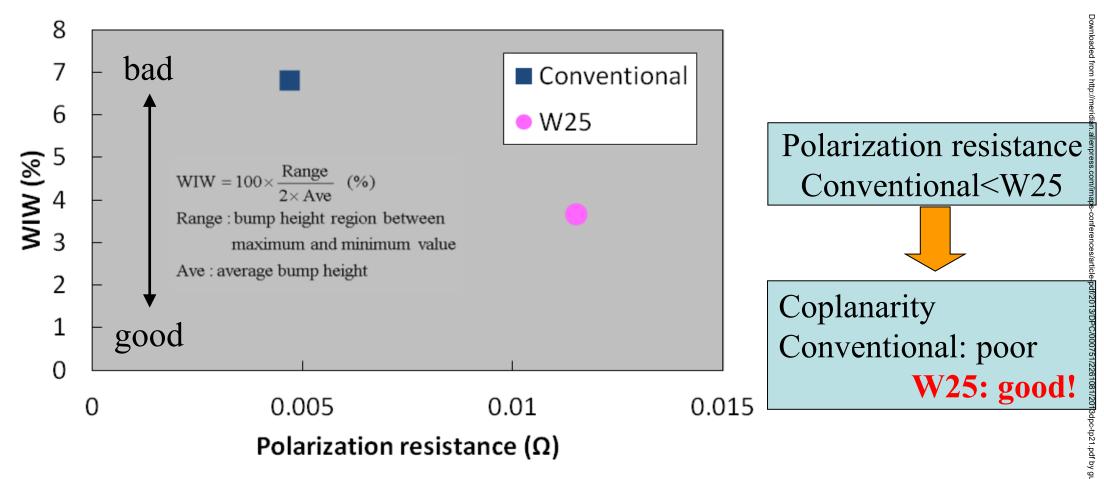

$$J_1/J_n=(R_n+Rp)/(R_1+Rp)$$


 J_1/J_n approaches to 1 with increasing Rp

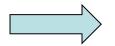
Increasing Rp, improving uniformity

MULOZS CHALLENGE TO ZERO ALPHA

Polivas of international conference & Exhibition on Device Packaging March 11 14 2013 Fountain Hills, AZ VS. Coplanarity



Large polarization resistance generates the good coplanarity.


TS-507 is one of the ideal chemicals for micro bumps.

Comsideration of Coplanatity for Cu Plating Chemical

In the case of Sn-Ag plating, increasing the polarization resistance makes the good coplanarity

> These concept can be applied to the Cu plating

Introduction of Cu and Sn-Ag Plating Chemical

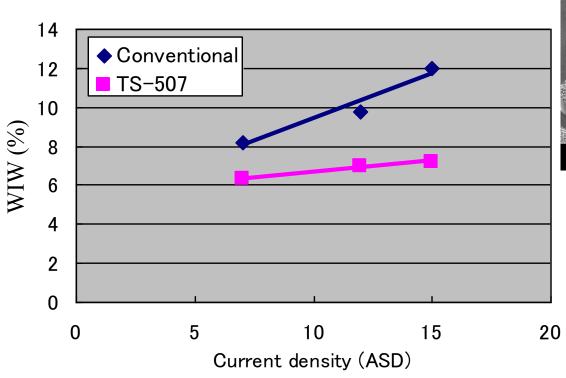
In MAPS of the fractional conference & Exhibition on Device Packaging March 11-14 2013 / Fountain Hills AZ, Sn-Ag plating chemical

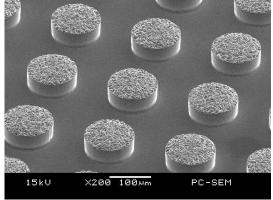
TS-507 (Sn-Ag)

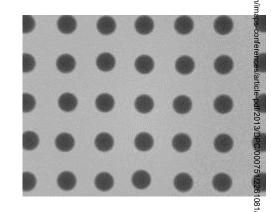
= 6 6 6 7 (8 == 1 - 8)		
Items	Standard	Control Range
$Sn^{2+}(g/L)$	85.0	75 to 95
$Ag^{+}(g/L)$	1.5*	1.0 to 2.0
Free Acid(g/L)	100	80 to 350
TS-SLG(g/L) [complex agent for Ag]	220	200 to 300
TS-507AD(ml/L) [additive]	60.0	50 to 80
Optimum Current Density (ASD)	13	8 to 15

W25 (Cu)

Items	Standard	Control Range
Cu^{2+} (g/L)	55	55 to 60 median.a
$H_2SO_4(g/L)$	110	90 to 130
Cl- (ppm)	80	60 to 100
W25-A (mL/L) [additive]	5	2 to 8
W25-B (mL/L) [additive]	10	60 to 100 2 to 8 7 to 13
Optimum Current Density (ASD)	15	10 to 20


Our new Cu and Sn-Ag plating chemical can achieve high speed plating process


^{*}Ag concentration should be adjusted depending on plater and resist thickness.

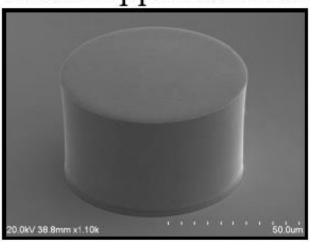


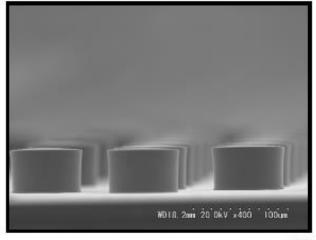
Females of International Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on Device Packaging | March 11-14, 2013 Foundain Hills Azn Conference & Exhibition on De

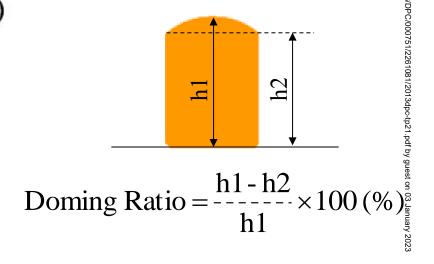
- ➤ High rate plating (8-15ASD)
- > Excellent coplanarity
- > Excellent Ag content variation

Current Density	Ag% σ
11ASD	0.26
13ASD	0.23
15ASD	0.17

Female International Conference Exhibition on Device Packaging | March 1 -1 2013 Four air Hills, AZ Chemical (W25)


High speed (conventional: < 10 A/dm²)


■ High Throughput : $15A/dm^2(10 \sim 20A/dm^2)$


■ Thickness Uniformity : WID 1 ~ 3%

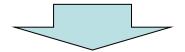
■ Flatness : Doming Ratio 3 ~ 5%

Pillar Appearance at 15A/dm² (3.3 μ m/min)

Comps 9t International Conference & Exhibition on Device Packaging (March 11-14, 2013 Fountain Hills, AZ | | ar Forming (TS-507)

Sn-Ag

Cu

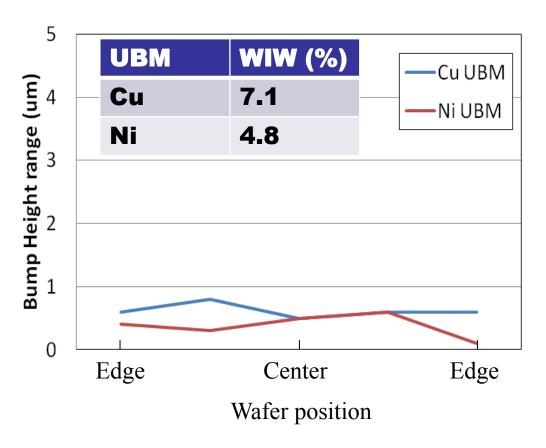

	Conventional	Novel
Cu Plating rate	1.1 um/min	3.3 um/min
Sn-Ag plating rate	2.5 um/min	6.5 um/min
rate		5

Cu pillar and Sn-Ag cap structure

> 2 times faster

Cu plating rate is slower than that of Sn-Ag plating at the same current density

Ou pillar process might be the bottleneck

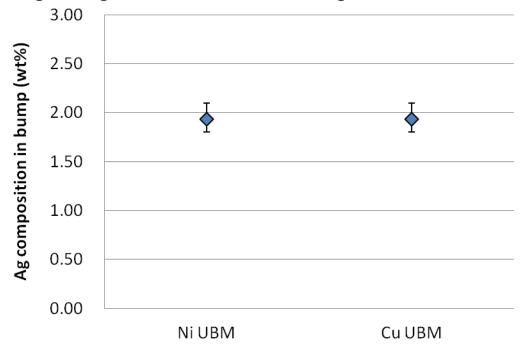


Applying the high speed chemical to the Cu pillar structure makes high throughput

Example of Forming Micro Bump

IMAPS 9th International Conference & Exhibition on Device Packaging | March 11-14, 2018 | Fountain Hills, AZ

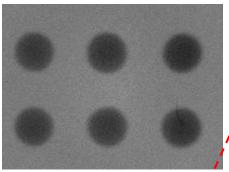
(micro bump)

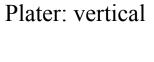


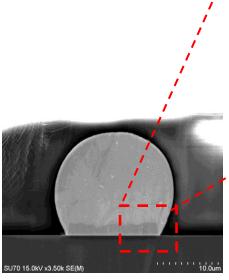
Cu:W25 (10 ASD) Ni: NPL-110 (5 ASD)

Sn-Ag:TS-507 (8 ASD)

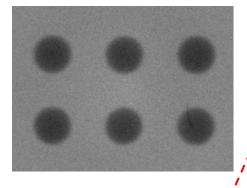
Plater: vertical


Target height: Cu, Ni: 3 um, Sn-Ag: 15 um

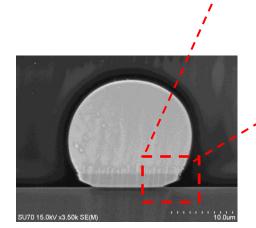

Our plating chemical can achieve the excellent coplanarity and bump composition uniformity


MULCUS CHALLENGE TO ZERO ALPHA PalMAPS 9th lighter national Conference & Exhibition on Device Packaging (March 11-14, 2013) Fountain Hills, AZ (MICCO DUMP)

Cu UBM



Cu: W25 (10 ASD) Sn-Ag:TS-507 (8 ASD)



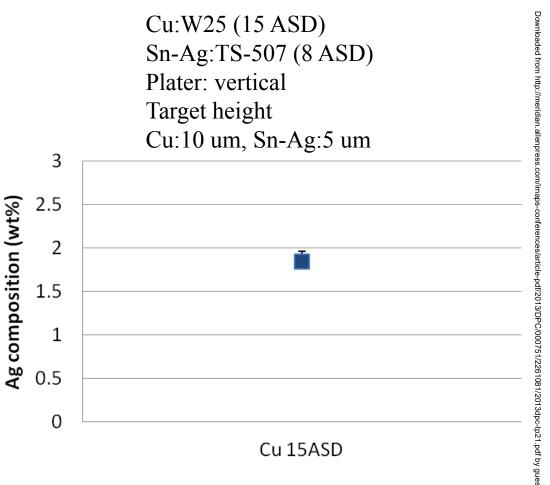
Ni UBM

Ni:NPL-110 (5 ASD) Sn-Ag:TS-507 (8 ASD) Plater: vertical

By applying our Cu, Ni, and Sn-Ag plating chemcial, we can obtain the void free micro bumps.

Cu Pillar

Item

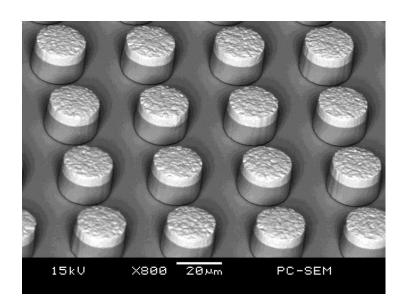

Pla MAPS 9th International Conference & Exhibition on Device Packaging Warch 11-14, 2013 | Fountain Hills, AZ

WIW (%)

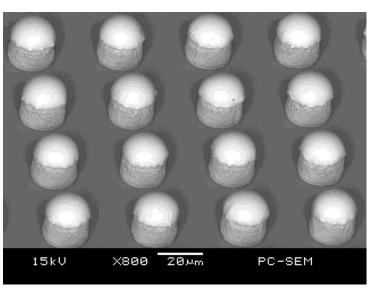
7 0

(Cu pillar + Sn-Ag micro bump)

Ou	Fillai		7.0
	Pillar +	Sn-Ag cap	5.4
5 آھ		—Cu F	Pillar
Bump Height range (um) 1		—Cu F	Pillar + Sn-Ag cap
ght rar ∞			
p Heږ 5			
Bung 1			
0	Edge	Center	Edge
	S	Wafer positio	C

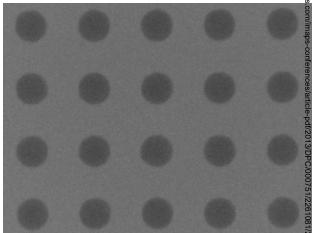


Our plating chemical can achieve the excellent coplanarity and bump composition uniformity even in Cu pillar structure



Pla MAPS 9th International Conference & Exhibition on Perice Packaging, March 11-14, 2013 | Fountain Hills, AZ

(Cu pillar + Sn-Ag micro bump)


As plated

Reflowed

Cu:W25 (15 ASD) Sn-Ag:TS-507 (8 ASD) Plater: vertical Target height

Cu:10 um, Sn-Ag:5 um

- Cu pillar and Sn-Ag cap structure have a good morphology, void performance even in high speed plating.
- Our Cu and Sn-Ag plating chemical are the potential candidates for micro bump formation with Cu pillar structure.

Summary

- Along with the development of packaging technologies, the requirement for bump forming process have been advanced.
- To correspond these requirement, we have established the high speed and high quality Cu and Sn-Ag plating chemical as W25 and TS-507
- Feature
 void performance: optimize the UBM condition, fine grain Sn-Ag bump
 Coplanarity: improvement of basic performance
- By using these chemical, we can achieve the good performance for micro bump with Cu pillar structure.
- We are convinced that the W25 and TS-507 are the ideal candidate for Cu pillar/ micro bump technologies.

Thank you!!

If you are interested, please feel free to visit our booth.

