

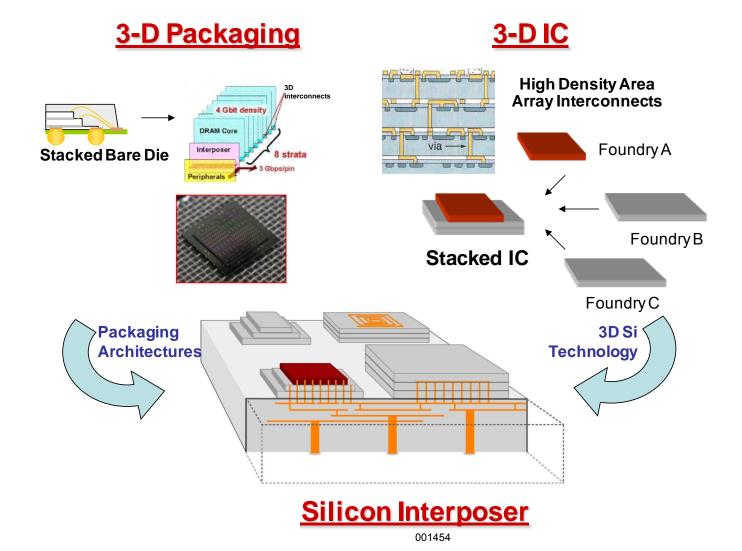
Temporary Wafer Bonding Materials and Processes

M. Lueck, P. Garrou, D. Malta, A. Huffman, M. Butler, and D.S. Temple

March 7, 2012

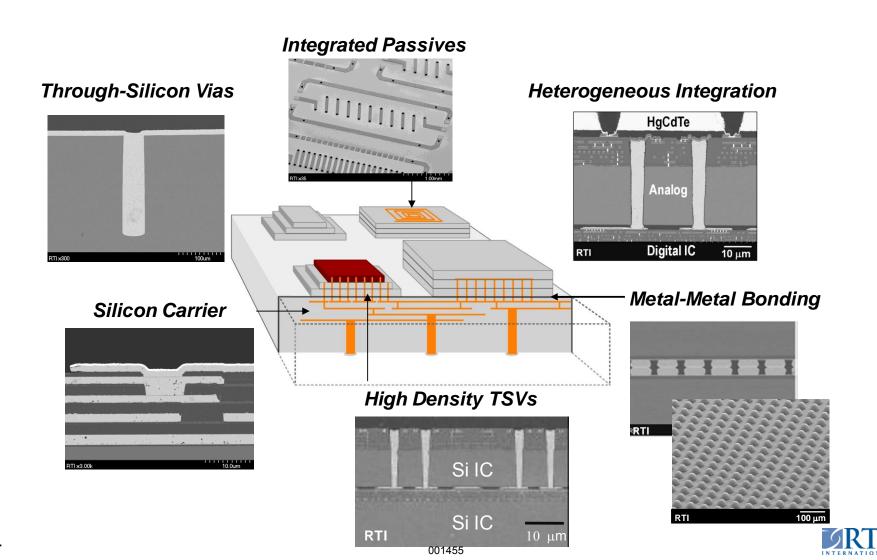
Financial support by US DoD

RTI International is a trade name of Research Triangle Institute. $^{0.01452}$


www.rti.org

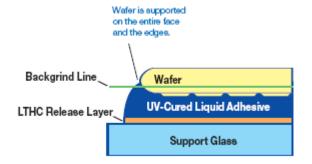
Outline

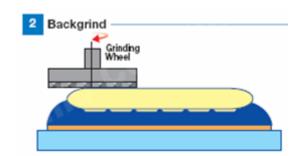
- Introduction:
 - 3D integration technology development at RTI
 - Temporary bond materials and methods
- Temporary bonding for 3D-IC applications
 - Process flow
 - Requirements of temporary bond materials
 - Results process compatibility, dicing, and bond yield
- Temporary bonding for silicon interposer applications
 - Process flow
 - Requirements of temporary bond materials
 - Results cure of spin on dielectrics, debonding

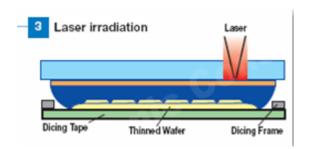

3-D Integration Technology Landscape

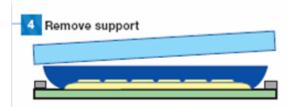
from http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

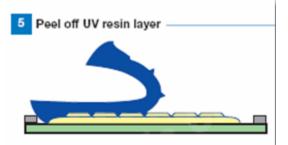
3D Integrated Electronics at RTI

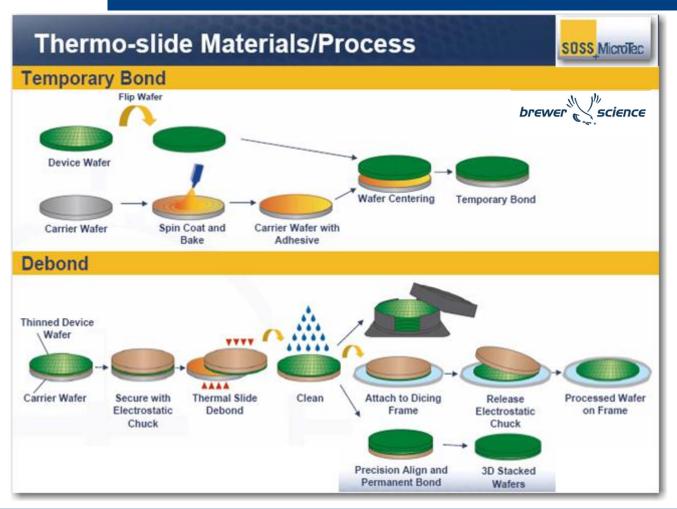

from http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023


Temporary Wafer Bonding Materials


- 3D integration → increased demands on temporary bonds
- Thinning process is now just the beginning
- Materials suppliers have developed many different temporary wafer bonding solutions


Company	Material	Bonding	Carrier	Debond	Debond Temp (°C)	Equipment
3M	Acrylic adh	UV	glass	YAG laser	RT On flex frame	Suss, Tazmo
Brewer	thermoplastic	thermal	Si / glass	Thermal slide	180	EVG, Suss
Brewer (Zonebond®)	thermoplastic	thermal	Si / glass	solvent	RT	EVG, Suss
DuPont	PI	thermal	glass	Excimer laser	RT On flex frame	Suss
TMAT	Silicone elastomer	thermal	Si / glass	mechanical	RT On flex frame	Suss
ТОК	NA	thermal	glass	solvent	RT	TOK

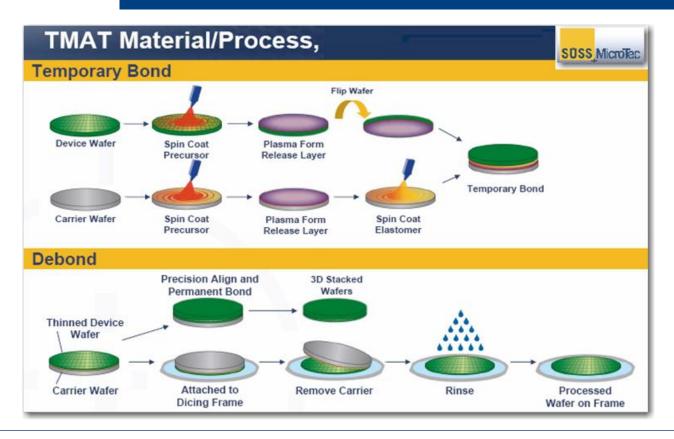

3MTM Wafer Support System


- LC3200 Low Temperature
 - 60+ minutes @150C, Several minutes @ 180 °C
- LC4200 Intermediate temperature
 - 90 minutes @ 180 °C, Several minutes @ 200 °C
 - Low outgassing back metal deposition, annealing
- LC5200 High temperature
 - 2 hours @ 200 °C, 1 hour @ 250 °C + Reflow Cycles at 260 °C

from http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

6

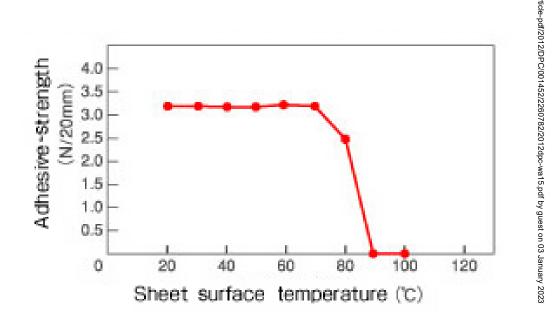
Brewer ZoneBONDTM and WaferBONDTM



- WaferBOND has full adhesive coverage slide off
- ZoneBOND has low tack zone in wafer center solvent release

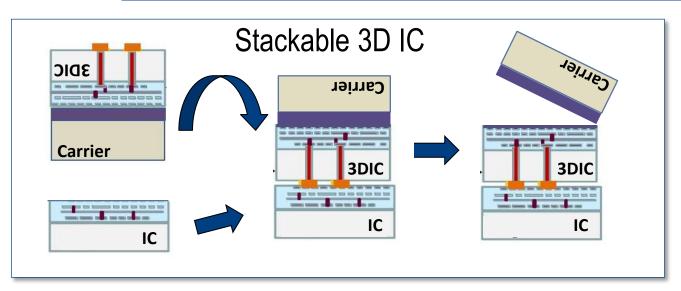
fom http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

Thin Materials AG


- The wafers are first coated with a thin (few hundred nm) proprietary release layer and subsequently bonded with silicone elastomer at 180° C.
- Wafer thinning down to 50 um and heat resistance above 250° C has been documented

from http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 202:

Nitto Denko Revalpha


- Double sided tape with pressure sensitive adhesive and...
- Thermal release
 adhesive abruptly
 loses adhesion at release
 temperature
- Many different adhesive strengths and release temperatures available
- Used in electronic component manufacturing

Temporary Bonding for 3D IC

Application

Face up, stackable 3D IC

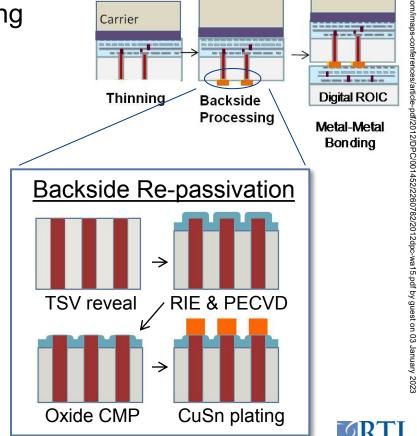
- 15 um thin silicon
- 10 um pitch interconnects
- backside TSV reveal
- backside CuSn bumps

Requirements

Temporary bond must be compatible with:

- Thinning
- PECVD
- Lithography
- Electroplating

- Dicing on Carrier
- Cu/Sn bonding at


250C

Process Flow – 3D IC

Temporary bond materials evaluated for the following process steps:

- Temporary wafer bonding and thinning
- Re-passivation
 - PECVD oxide at 150 C
 - Oxide CMP
- Formation of Cu/Sn interconnects
 - Lithography
 - Electroplating
 - Strip and seed etch
- Dicing on carrier
- CuSn bonding and de-mount

First lot → backside processing only Second lot → full process w/ TSVs

Observed Process Compatibility

Temporary Bond	Temporary Bond Type	Thinning	PECVD Oxide	Litho- graphy	Electro- plating	Dicing on Carrier	Die Bonding & Release
Nitto Denko Revalpha	Thermal Release Tape	Good	Treatment Needed	Solvent susceptible	Good	Special conditions	< 200 C bonding only
Brewer Science WaferBOND	Thermo- plastic	Good	Flows at edge	Good	Good	Good	Flows during bonding
Thin Materials TMAT	Mechanical Release	Good	Good	Good	Good	Special conditions	Good

Thinning

- TTV of materials
- Cracks in thin wafer
- PECVD oxide deposition
 - Adhesion loss
- Lithographic processes
 - Loss in resolution
 - Chemical resistance

- Electroplating
 - Seed layer edge continuity
 - Compatibility w/ acid
- Dicing on carrier
 - Adhesion and chipping
- Die bonding
 - Bond yield

Carrier release

Criteria

12

001463

rom http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

Observed Process Compatibility

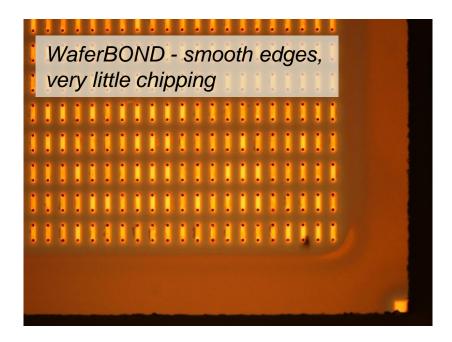
	porary	Temporary Bond Type	Thinning	PECVD Oxide	Litho- graphy	Electro- plating	Dicing on Carrier	Die Bonding & Release
10.10.000	Denko Valpha	Thermal Release Tape	Good	Treatment Needed	Solvent susceptible	Good	Special conditions	< 200 C bonding only
	r Science erBOND	Thermo- plastic	Good	Flows at edge	Good	Good	Good	Flows during bonding
	Materials MAT	Mechanical Release	Good	Good	Good	Good	Special conditions	Good

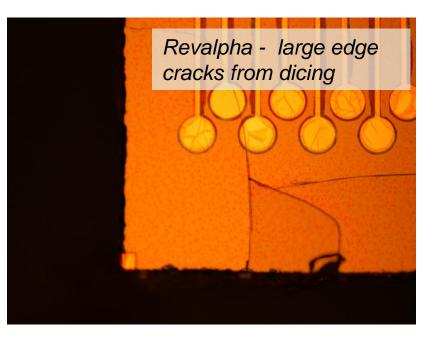
Evaluated in 2nd lot

- Cracks in thin wafer
- PECVD oxide deposition
 - Adhesion loss
- Lithographic processes
 - Loss in resolution
 - Chemical resistance

- Electroplating
 - Seed layer edge continuity
 - Compatibility w/ acid
- Dicing on carrier
 - Adhesion and chipping
- Die bonding
 - Bond yield

rom http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 202:

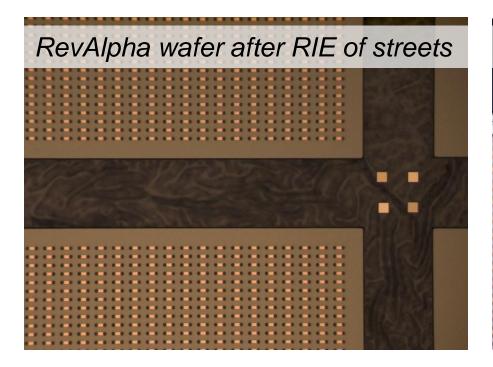

13

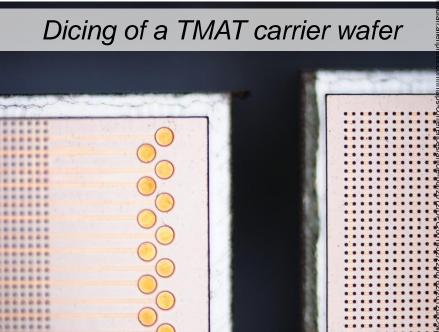

Criteria

001464

Carrier release

Dicing on Carrier

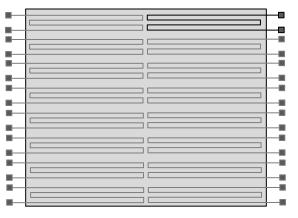



TMAT wafer delaminated during standard dicing (not shown)

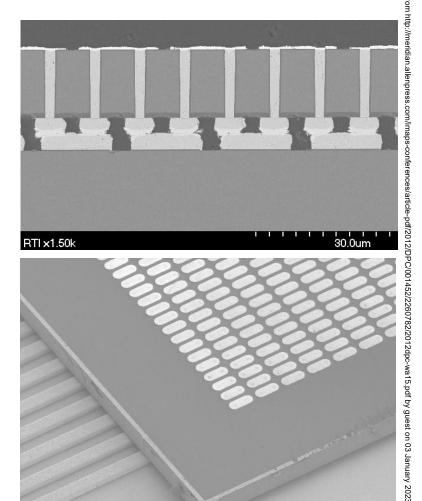
WaferBOND was compatible with standard dicing through thin Si and carrier

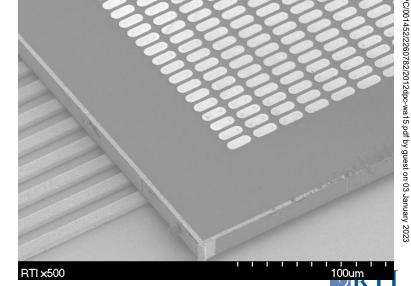
from http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

Dicing on Carrier



Edge cracking (RevAlpha) & delamination (TMAT) were eliminated by DRIE singulation of thin Si, then carrier wafer dicing


Bonding and Electrical Test



640x512 Cu/Sn - Cu microbump array

1272 bump bonds per channel

- After bonding and carrier release, 2-wire resistance measurements were made on all channels to check for:
 - **Channel resistance**
 - No. of channel opens
 - No. of shorts between rows
 - Extrapolated bond yield

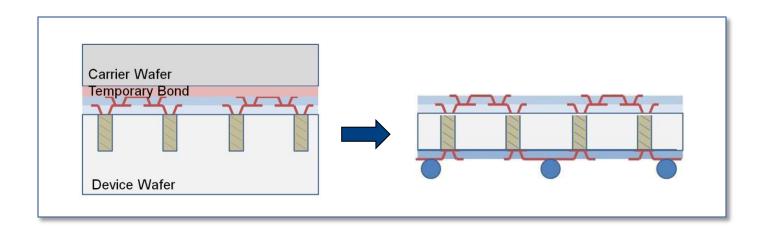
Thin Die Bond Yield

Temp Bonding Material:	WaferBond 9001	TMAT
Cu/Sn - Cu Bond Conditions	250°C for 180sec	250°C for 180sec
# of Bonded Die Tested	8	9
Median Channel Resistance	596 - 721 Ω	603 - 652 Ω
# of Open Channels	0 - 5 (avg. = 2)	1 - 23 (avg. = 8)
# of Channels Containing Shorts (channel R < 550 Ω)	4 - 18 (avg. = 9)	7 - 59 (avg. = 19)
Channel Electrical Yield (%)	98.0 - 100 (avg. = 99.2)	91.0-99.6 (avg. = 96.9)
Extrapolated Bond Yield (%)	≥99.998	≥99.993

Both temporary bond materials resulted in excellent bond yield and clean release of the carrier die

> Similar to full thickness die bonding yield

fom http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023


Temporary Bonding for 3D IC - Conclusions

- Backside thin Si processing, oxide CMP, and singulation successfully demonstrated on three temporary carrier materials
- Die bonding & release successful on both WaferBOND and TMAT temporary bond materials
 - TMAT exhibits good resistance to all backside processes and good mechanical support during die bonding
 - Does not deform or flow during PECVD oxide deposition
 - Does not squeeze out during bonding (could work with pre-dispensed underfills)
 - Requires "dice-by-etch" of thin silicon
 - WaferBOND exhibited some flow in the edge bead during PECVD processing but good mechanical support and excellent die bonding results
 - PECVD oxide deposition caused WaferBOND to soften and flow at exposed wafer edge
 - Squeezes out during bonding (pre-dispensed underfills?)

lenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 202

Temporary Bonding for Silicon Interposer

Application

Thinned silicon interposer

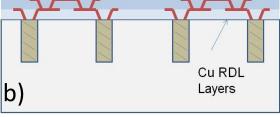
- 50 200 um thin silicon
- 10 50 um Cu filled TSVs
- backside polymer dielectric
- backside solder bumps

Requirements

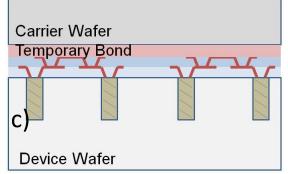
Temporary bond must be compatible with:

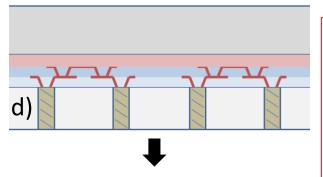
- Thinning
- PECVD
- Lithography
- Electroplating

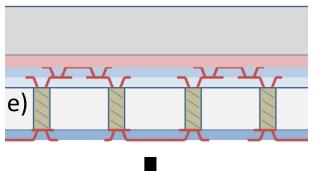
- Polymer cures at
- 190 250 C
- SnAg reflow at
- 250 C

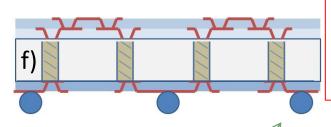

Process Flow – Silicon Interposer Test Vehicle

TSV etch and fill




Front side RDL





Temporary wafer bonding

Thinning and TSV reveal

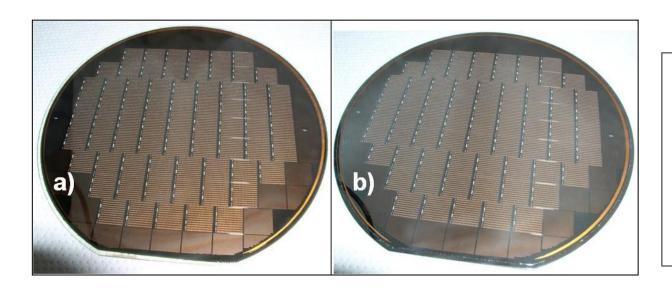
Backside RDL (dielectric curing at 190 – 250 C) from http://meridian.allenpress.com/maps-comerces/articlespod/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

Bumping, singulation, & bonding

RTI

Backside RDL & Dielectric

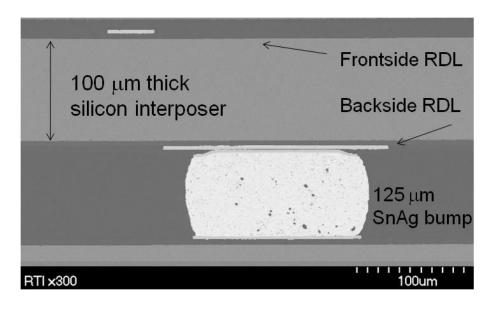
- Three common spin-on dielectrics were imaged and cured on 100 μm thin silicon on 3M WSS and WaferBOND 9001
- Wafers were monitored for adhesion loss after cure


Wafers	Backside Passivation Material			Bond Pad	Carrier Removal	
	ALX	PBO	всв		Removai	
WB-1	X		_	Ball	Die	
WB-2		Χ		Pad	Die	
WB-3			Χ	Ball	Die	
3M-1	Χ			Ball	Wafer	
3M-2		Χ		Pad/Ball	Die	
3M-3			X	Ball	Wafer	

• Lot already in progress will examine integration of 25 x 100 μ m and 50 x 200 μ m vias with dielectric cures

rom http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 202:

Backside RDL & Dielectric

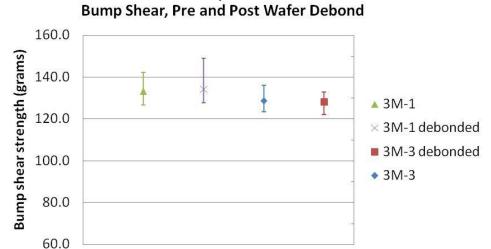

100 μm thin silicon wafers after back side RDL process ing on: s/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

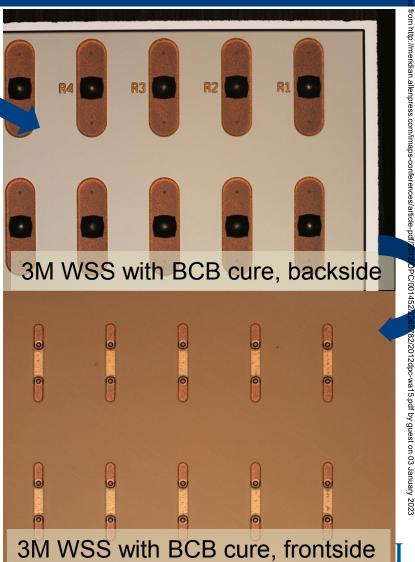
- a) 3M WSS and
- WaferBOND 9001

- No signs of adhesion loss were see on either temporary bond material after dielectric cures at 190 C, 200 C, and 250 C
- Both materials also exhibited good resistance to lithography, electroplating, and wet etching processes

Debonding

- Debonding of WaferBOND carriers done at die level
 - Reflow of bumps at 250 C
 - Removal of carrier at 180 C
- Debonding of 3M WSS carriers done at wafer level
 - 2nd carrier to protect bumps
 - Diced from backside




from http://meridian.allenpress.com/imaps-conferences/article-pdf/2012/DPC/001452/2260782/2012dpc-wa15.pdf by guest on 03 January 2023

Debonding

No significant debond residue was observed on either bond technology with *any of the backside dielectrics*

No change in bump shear strength after 3M WSS debond process (WaferBOND not tested)

001475

Conclusions

- Temporary bond materials integrated into fabrication process for 3D-IC and interposer applications
- Demonstrated 15 μm thin 3D-IC test vehicle
 - 10 μm pitch area array of TSVs and Cu/Sn-Cu interconnects
 - Both temporary bonds > 99.99% yield of TSVs and interconnects
- Demonstrated 100 μm thin interposer test vehicle
 - Curing of common dielectrics on thinned wafers
 - 2^{nd} lot with 25 x 100 μm Cu filled TSVs in progress
- Temporary bond materials have trade-offs in process compatibility, maximum temperature, ease of release, etc
- Application specific decisions on material type must be made

