

Improved RF Metamaterial Band-Pass Filter Design Using CSRR Structures on LCP Substrate

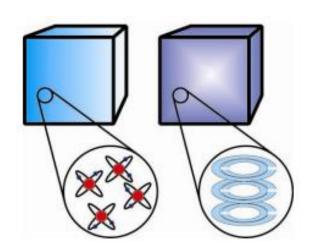
Christopher James, Robert N. Dean
Auburn University
March 17, 2015

SAMUEL GINN COLLEGE OF ENGINEERING

Introduction

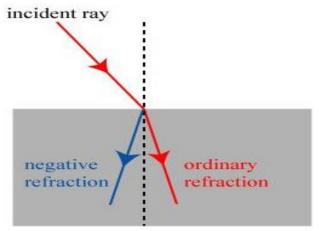
- Metamaterial filters present many advantages
 - Compact size
 - Simple design
 - Low fabrication cost
- The problem with band-pass filters
 - Upper band smoothing effect
 - Asymmetric frequency response
- How to improve the frequency response?

Metamaterial Background


- V. Veselago foundational work (1967)
 - Negative index of refraction
 - Negative parameters yield unusual materials
- J. Pendry
 - Theoretical basis for negative ε and μ
 - Superlens (2000)
- D. Smith
 - First realization of a negative index of refraction
- Electromagnetic implications

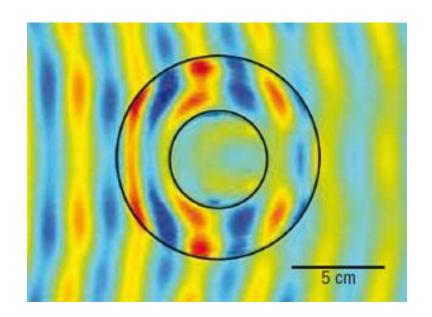
What is a Metamaterial?

- Periodic structures
 - Artificially created
 - Sub-λ size
 - Cascading "unit cells"
- Resonators like atoms
 - Structure vs. composition
 - Physical dimensions
 - Resonator shapes



What is a Metamaterial?

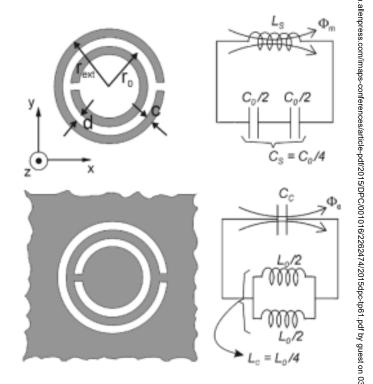
- Negative ε and μ
 - Reverse Snell's Law
 - (n²=εμ)
 - Inverse Doppler Effect
- Maxwell's Equations
 - $-D = \varepsilon E, B = \mu H$
 - "Left-handed" medium
 - Poynting vector opposite of k
 - Boundary conditions
 - Negative normal components



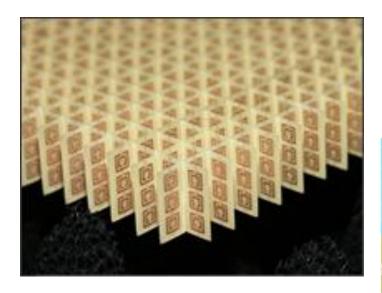
Metamaterial Applications

- Electronic
 - Filters
 - Antennas
 - Oscillators
- Optical
 - Lenses
 - Invisibility cloak
- Acoustic
 - Seismic cloak

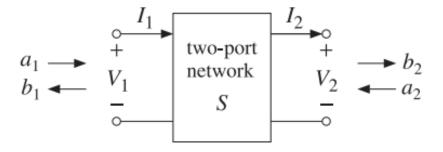
Resonating Structures


- Split-ring resonator (SRR)
 - External magnetic flux
 - Incorporated into signal line
- Complementary split-ring resonator (CSRR)
 - External electric field
 - Etched into ground plane
- Other shapes are possible
 - Square, H-shaped, spiral

Resonating Structures

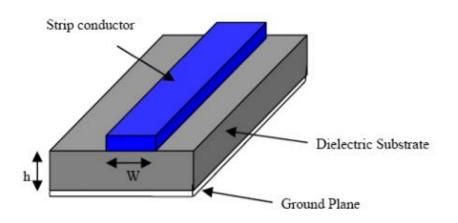

- Circuit models
 - LC resonator
- Dimensions
 - Spacing
 - Gaps
 - Radius
- Duality
 - CSRR > negative image of SRR
 - "Roughly" duals

Resonating Structures



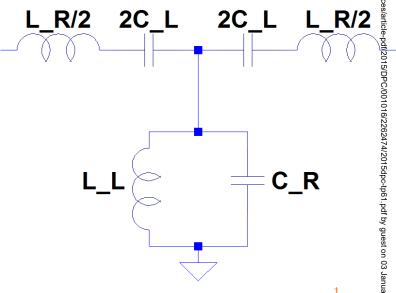
Microwave Filters Review

- S-Parameters
 - Two-port network
 - Insertion loss
 - S11
 - Return loss
 - S21
 - Graph of magnitude (dB) vs frequency (Hz)

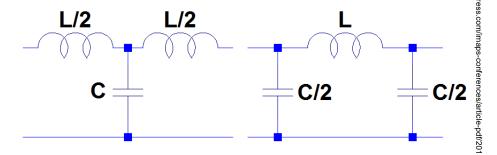


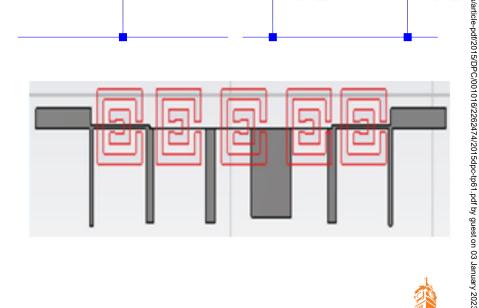
Microwave Filters Review

- Microstrip
 - Conducting metal sheet
 - Dielectric substrate
 - Ground plane
 - Models L and C
- Transmission line
 - Lumped elements

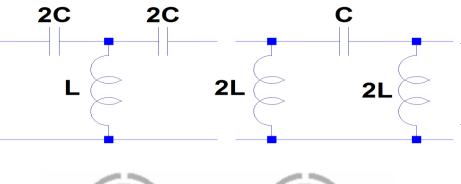


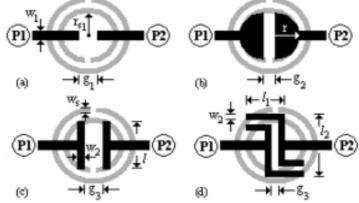
- Metamaterial T-Line model
 - Backward waves
 - CRLH behavior
 - Low *f* > reactive elements
 - High *f* > line elements
 - Negative parameters


$$\bullet \quad \varepsilon_{eff} = \frac{C_R}{l} - \frac{1}{\omega^2 L_L l}$$

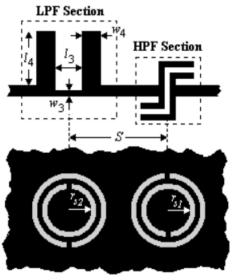

$$\mu_{eff} = \frac{L_R}{l} - \frac{1}{\omega^2 C_L l}$$

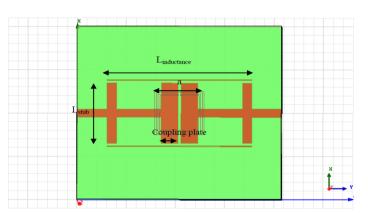
- Low-pass filter
 - Series inductance
 - Shunt capacitance
- Metamaterial LPF
 - Shunt stubs
 - Inductance
 - No etched line gaps



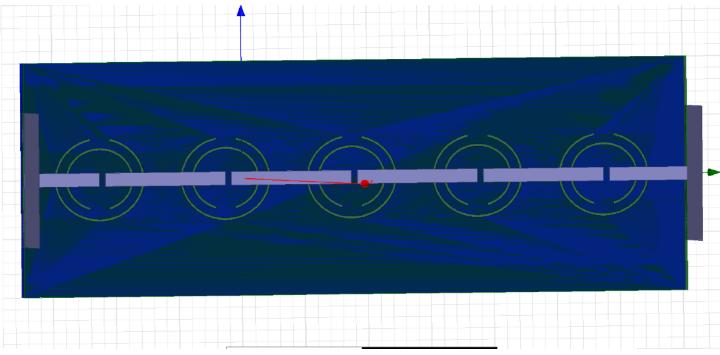


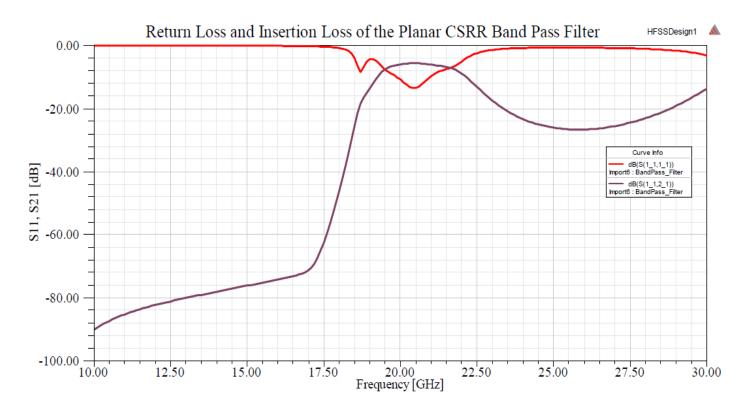
- High-pass filter
 - Shunt inductance
 - Series capacitance
- Metamaterial HPF
 - Series etched gaps
 - Capacitance
 - No line shunt stubs





- Metamaterial BPF
 - Shunt stubs
 - Series gaps
 - Capacitance and inductance
- Three approaches
 - Alternating elements
 - Series gap
 - Single element




- Filter
 - Series gaps
 - No shunt stubs
- Frequency response
 - ~ -16 dB S21 at f_c
 - Smoothing effect in the upper band
 - Sharp dropoff in the low band
 - Transmission zero
 - Common problem with BPFs and BSFs

- Improvement goals
 - Improve passband S11
 - Remove S21 smoothing in upper band
- Method
 - Single element design
 - Combination of LPF and HPF
 - HFSS modeling and simulation
 - Unit cell approach

College of Engineering

Single Element Design

- Saves space
 - Filters ~1/2 the length
 - High-order filters
- Increased complexity
 - More tuning required
 - More sensitive to dimensions
- Relatively new approach

SAMUEL GINN COLLEGE OF ENGINEERING

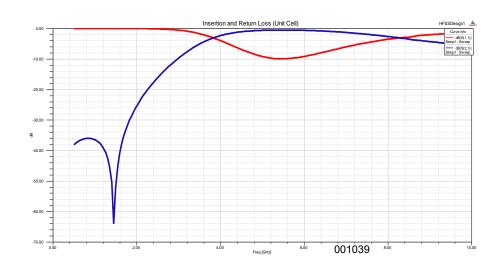
HFSS

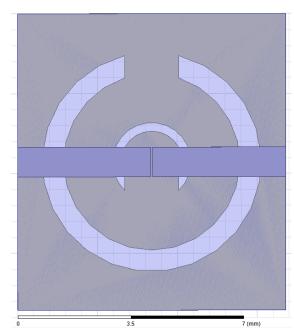
- Commercial EM field solver
 - FEM
 - Filters, antennas, packaging, etc.
- 3D modeling
 - Material definitions
 - Variable dimensions
- Simulation
 - Specify parameters
 - Software creates the mesh

Liquid Crystal Polymer (LCP)

- Environmental resistance
 - Extreme temperatures
 - Chemicals, radiation, fire
- RF properties
 - Relatively low ε (~ 3)
 - Low loss tangent (~0.004)
- Flexible substrate
 - Small effect on filter performance
- Micromachinable

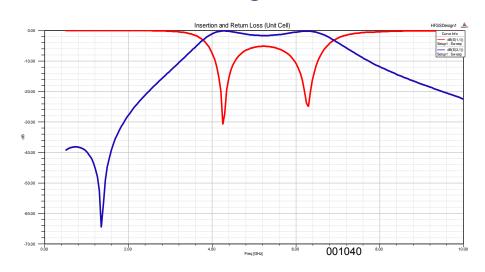
Simulation Setup

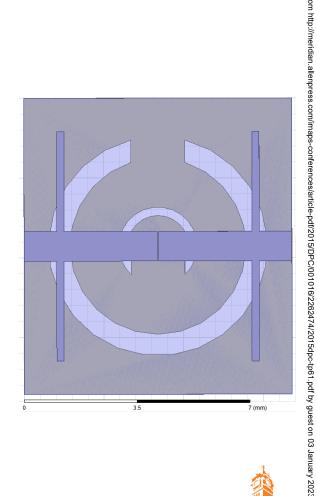

- Frequency Sweep
 - HFSS
 - 1 to 10 GHz
 - 201 points
 - Solution frequency 4.2GHz
- S-Parameter plot
 - S11 (insertion loss) in red
 - S21 (transmission loss) in blue



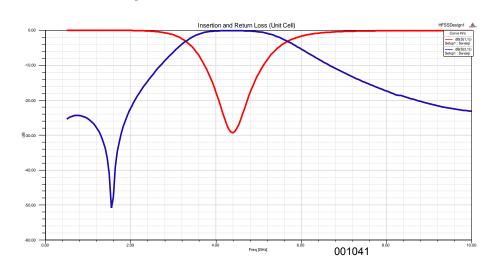
SAMUEL GINN COLLEGE OF ENGINEERING

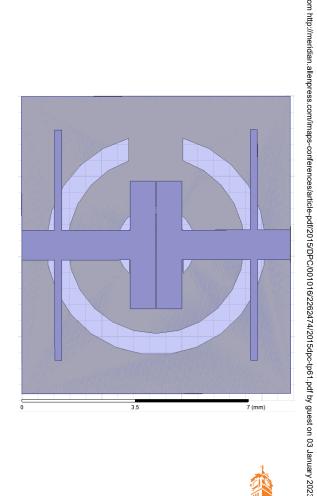
- Initial Design
 - Copper line
 - Copper ground
 - LCP substrate



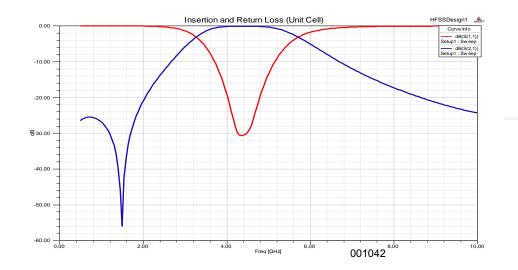


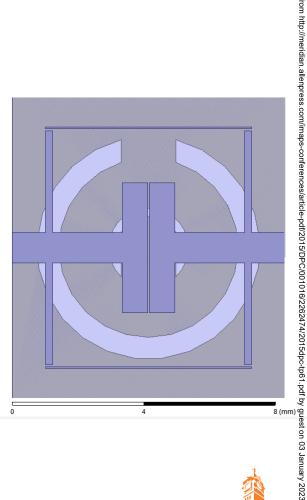
- Shunt stubs added
 - Increased low-pass component
 - Two resonant frequencies
 - Less smoothing





- Stubs at the gap added
 - High-pass component
 - Second resonance removed
 - Band-pass behavior





- Inductive lines added
 - Slight increase in performance
 - -30dB S21 at f_c

Future Work

- Fabricate model for physical testing
- Use unit cell to make a high-order filter
 - Impedance matching between cells
- Model curved structure
 - LCP flexibility
 - Previous work—effect on frequency response
- Test more element combinations

Conclusions

- Metamaterial band-pass filter design has a unique challenge
 - Smoothing effect in the upper band
- Additional design considerations can help improve upper band performance
- Combining low-pass and high-pass metamaterial design concepts can help
- Example filter modeled and simulated

References

- V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ ," *Sov. Phys. Usp.*, vol. 10, pp. 509-514, Jan-Feb 1968.
- R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," *Science*, vol. 292, pp. 77-79, 6 April 2001.
- J. B. Pendry, "Negative refraction makes a perfect lens," *Phys. Review. Lett.*, vol. 85, no. 18, pp. 3966-3969, October 2000.
- J. B. Pendry, "Metamaterials and the control of electromagnetic fields," 2007.
- skullsinthestars, "Skulls in the Stars," 19 May 2009. [Online]. Available: http://skullsinthestars.com/2009/05/19/what-does-negative-refraction-look-like/. [Accessed February 2015].
- J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," *IEEE Trans. MTT*, vol. 53, no. 4, pp. 1451-1461, April 2005.
- Umm Al-Qura University, [Online]. Available: http://libback.uqu.edu.sa/hipres/Indu/indu14496.pdf

References

- D. Gupta, P. Gupta, P. Chitransh and P. K. Singhal, "Design and analysis of low pass microwave filter using metamaterial ground structure," in 2014 International Conference on Signal Processing and Integrated Networks, Noida, 2014.
- P. Mondal, M. K. Mandal, A. Chaktabarty and S. Sanyal, "Compact bandpass filters with wide controllable fractional bandwidth," *IEEE Microwave and Wireless Comp. Lett.*, vol. 16, no. 10, pp. 540-542, 25 September 2006.
- R. S. Kshetrimayum, S. Kallapudi and S. S. Karthikeyan, "Stopband characteristics for periodic patterns of CSRRs in the ground plane," *IETE Technical Review*, 2007.
- S. Pasakawee, "Left-handed metamaterials realized by complementary split-ring resonators for RF and microwave circuit applications," 2012.
- U. Blair, "Simulation and analysis of a metamaterial filter on a flexible liquid crystal polymer substrate," 2014.
- J. Richard, "Metamaterial filters on LCP substrate using MEMS technology," 2011.
- Giorgio Volpe, "Magical Metamaterials," 31 August 2009. [Online]. Available: http://opfocus.org/index.php?topic=story&v=6&s=6 . [March 2015].

Questions?

