Anaerobic adhesive jetting for microelectronics packaging applications

Dr. Hanzhuang Liang, Floriana Suriawidjaja, Michael Szuch

Nordson ASYMTEK Carlsbad, CA

Overview

Application objective

Background on anaerobic adhesives

Application challenge

Dispense solution

- List of key parameters
- Design of experiment
- Feasibility and optimization
- Applied in production

Summary

Objective

Dispense anaerobic adhesives

Bond small metal components

Novel use on: MEMS device and optical sensor

Final products: automotive, portable consumables electronics

Customer request: accuracy and throughput

Polymerization chemical reaction process needed for most adhesives to cure; reacting monomer molecules together to form polymer chains; radical and ionic polymerizations.

Anaerobic adhesive cures by radical polymerization

Radical polymerization initiator monomer activates the reaction, creates free radicals/unpaired electrons, which react with the resin monomer to form the polymer. Process is temperature dependent.

Anaerobic adhesive cure mechanism [1][2][3]

Property: remain liquid when exposed to air, harden when confined between metal surfaces.

Example: Loctite 661/638, cumene hydroperoxide (initiator) + Urethane methacrylate (resin) + iron (metal in substrate) in confined space w/o oxygen

(1) $Fe^{2+} + ROOH \rightarrow Fe^{3+} + RO \cdot + OH^{-}$ $R = C_6H_5C(CH_3)_2$

(2)
$$RO \cdot +M = P \cdot$$

$$(3) P \cdot + M = \sim P \cdot$$

(4)
$$\sim P \cdot + \cdot P \sim = \sim PP \sim$$

or (5)
$$\sim P \cdot + O_2 = \sim P - O - O \cdot$$

 $\sim P - O - O \cdot + M = \sim P - O - O - M \cdot$

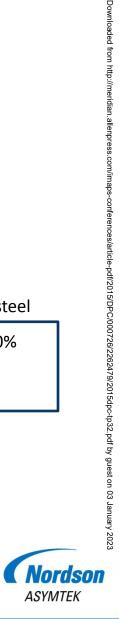
reactions:

- (1) Radical formation,
- (2) chain initiation,
- (3) chain growth,
- (4) polymerization w/o O₂
- (5) with O_2

References

^[1] Richard D. Rich, "Anaerobic adhesive", Page 761 in "Handbook of adhesive technology" Edited by A. Pizzi & K. L. Mittal, 2003.

^[2] D. Raftery and M. R. Smyth, "Effect of copper (II) and Iron Fe (III) ions on reactions undergone by the accelerator commonly used in anaerobic adhesives", Int. journal adhesion & adhesive, volume 17, 1997


^[3] David J. Stamper, "Curing characteristics of anaerobic sealants and adhesives", British polymer journal, volume 15, March 1983

Background on anaerobic adhesives

Cure fast within confined metal surfaces, w/o O_2 Difficult to handle in scale smaller than millimeter Broadly used for industrial purposes

Novel applications

	Demo 1:	Demo 2:	
Application Customer Adhesives	seal component on MEMS device Portable consumable electronics Loctite 638, sensitive to steel	seal component on optical sensor Automotive electronics Loctite 661, sensitive to stainless steel	
Specs	Weight 0.27mg, 3σ=10% Non-contact access to cavity UPH 3600	5mg on each side of tubing, 3σ=10% Non-contact access to cavity UPH 3600	

Background on anaerobic adhesives

Cure fast within confined metal surfaces, w/o O₂ Difficult to handle in scale smaller than millimeter Broadly used for industrial purposes

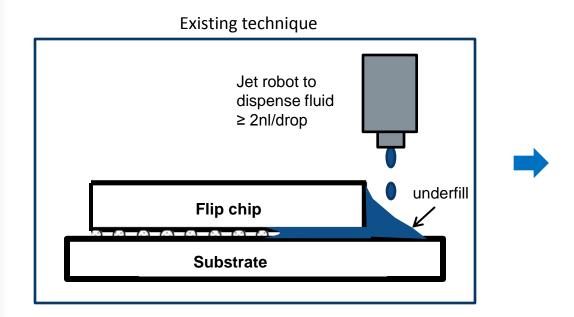
Challenge

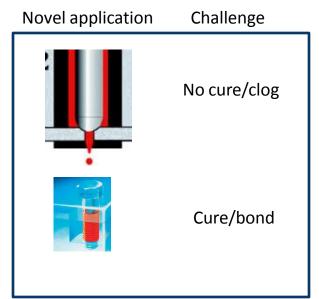
Recent novel application in microelectronics packaging Accuracy 0.027mg => high precision dispenser UPH 3600, complex cavity => non-contact jetting

Industrial purpose Large-small scale > 1mm Manual/simple dispenser Accuracy: 1mg **UPH 60**

MEMS/sensor Micro-scale < 1mm High precision dispenser Accuracy: 0.027mg **UPH 3600**

Challenge


Existing technique: DJ-9500 jetting, precision=2nl/drop, frequency =167Hz


Well established process: underfill, encapsulation, sealing

Valve robustness and dimension precision request

⇒Stiff/rigid metal components

Conflict: anaerobic adhesive cures in high-precision valve

Jetting solution DJ-9500:

High precision High throughput Non-contact

Test parameters:

Adhesives
Component size
Surface materials
Maintenance
Fluid temperature

Optimization target:

No cure/clog Accurate flow rate Least maintenance Affordable price

Jetting solution DJ-9500:

High precision High throughput Non-contact

Test parameters:

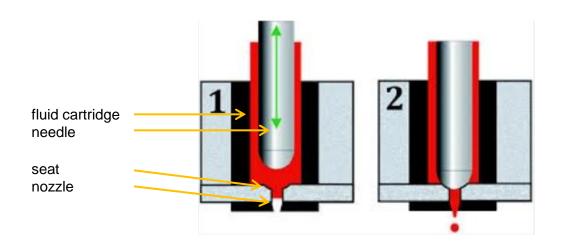
Adhesives Component size Surface materials Maintenance Fluid temperature

Design of Experiments: total 35 runs

Adhesives: Loctite 661 and 638

Components: fluid cartridge, needle, seat, nozzle

Component size: Medium to small orifice Surface materials: standard or special Maintenance: frequent purge or not


Fluid temperature: low to high

Optimization target:

No cure/clog Accurate flow rate Least maintenance Affordable price

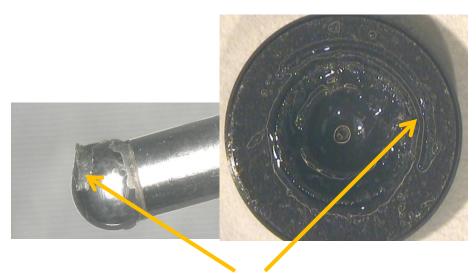
Confined dimensions/materials in DJ-9500:

Between chamber and needle: small gap, stainless steel/carbide surfaces

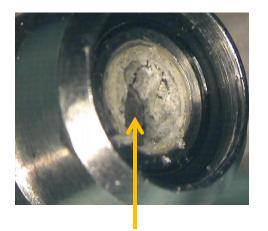
Between seat & needle: zero-gap, carbide surfaces

Within seat: orifice 1.5-0.38mm, carbide

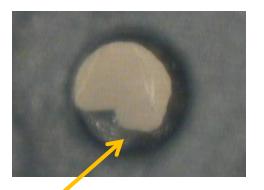
Within nozzle tip: orifice 0.25-0.1mm, stainless steel, carbide, etc


Curing samples:

Fluid cured between chamber and needle: small gap, stainless steel/carbide surfaces


Fluid cured between seat & needle: zero-gap, carbide surfaces

Fluid cured within seat: orifice 0.38mm, carbide


Fluid clogged at nozzle tip: orifice 0.1mm, stainless steel, etc.

Full gel along contact rim by needle & seat => clog

Full gel at bottom of fluid chamber

partial gel in seat orifice => Q drops

| 12 March 2015 | IMAPS Device Packaging Arizona

Optimization basics

Less active materials still cure, but slower
Cure faster within smaller space
Rigorous maintenance/self wash to reduce flow stagnation
High fluid temperature promotes curing

DOE results:

Adhesive	Flow rate (mg/shot)	Special surface Yes/No	Fluid temperature (°C)	Max purge interval (minute)	Clog after 1 Hr idle Yes/No
Loctite 661	0.22	N	28	15	C/meridia
661	0.11	N	28	15	Y an. allenp
661	0.11	Υ	28	15	N ress.con
661	0.04-0.06	N	28	4	Y maps-
661	0.04-0.06	Υ	28	15	N
Loctite 638	0.02-0.06	N	35	4	Y
638	0.02-0.06	Υ	35	15	N
638	0.02-0.06	Υ	55	N/A, clog immediately	N/A

DOE results:

Adhesive	Flow rate (mg/shot)	Special surface Yes/No	Fluid temperature (°C)	Max purge interval (minute)	Clog after 1 Hr idle
Loctite 661	0.22	N	28	15)://meridia
661	0.11	N	28	15	Y an. allenp
661	0.11	Υ	28	15	N
661	0.04-0.06	N	28	4	Y maps-
661	0.04-0.06	Υ	28	15	Conferen
Loctite 638	0.02-0.06	N	35	4	Y
638	0.02-0.06	Υ	35	15	N
638	0.02-0.06	Υ	55	N/A, clog immediately	N/A

Optimization target:

No cure/clog Least maintenance Affordable price

DOE results:

Adhesive	Flow rate (mg/shot)	Special surface Yes/No	Fluid temperature (°C)	Max purge interval (minute)	Clog after 1 Hr idle
Loctite 661	0.22	N	28	15	://meridi
661	0.11	N	28	15	Y allenp
661	0.11	Υ	28	15	N ress.con
661	0.04-0.06	N	28	4	Y maps-
661	0.04-0.06	Υ	28	15	Conferen
Loctite 638	0.02-0.06	N	35	4	Y
638	0.02-0.06	Υ	35	15	N
638	0.02-0.06	Υ	55	N/A, clog immediately	N/A

Maintenance

purge every 15min or shorter clean every 12-24 hr

Fluid temperature

28-35°C

Component

Medium flow rate: standard, e.g. stainless steel, carbide

Small flow rate/small size orifice special, e.g. plastic, inactive metal alloys

Non-cure solution

25 production lines, 24hr operation

000726/2262479/2015dpc-tp32.pdf by guest on 03 January 2023

12 March 2015 | IMAP

Summary

Anaerobic adhesives jetting: ASYMTEK DJ-9500 Application: to bond metal components on MEMS/sensors Final use: portable consumables, automotives Jetting advantage: high throughput, high precision, non-contact Achievement: 25 production lines, 24-hr continuous operation Goal: to help customers to push limit on their packaging capability as leading suppliers

Contact

Hanzhuang "Hannah" Liang, PhD PE Phone 760-930-3313, Fax 760-918-8332 Hannah.liang@nordsonasymtek.com

