

HIGHLY TUNABLE MN-DOPED PZT (PMZT) THIN FILMS FOR INTEGRATED RF DEVICES

Warda Benhadjala, Florence Sonnerat, Jennifer Guillaume, Christel Dieppedale, Philippe Renaux, Gwenael Le Rhun, Henri Sibuet, Christophe Billard

Dr. Warda Benhadjala

CEA LETI, 17 rue des Martyrs, 38000 Grenoble, France warda.benhadjala@cea.fr

11TH INTERNATIONAL CONFERENCE AND EXHIBITION ON DEVICE PACKAGING

- Research Engineer & WP manager at CEA Leti
- PhD in Physics & Engineering
 University of Bordeaux, 2013
- Master in Laser Physics
 University of Bordeaux, 2009
- Author of more than 15 publications & conferences
- Reviewer for leading international journals
 Advanced Materials, Advanced Science, Applied Physics Letters, Journal of Applied Physics
- Innovation Award
 Safran Power Electronics Center Symposyum, 2011
- R&D in Materials & Technologies for (Opto-)Electronics

 Development, characterization & failure analyses of innovative devices, Electrical measurements,

 Physico-chemical analyses, Materials science, Ceramics, Polymers, Nanocomposites, RF applications...

CEA LETT: FLIGHT TO GRENOBLE (FRANCE)

CEA Institute organisation

Nuclear Energy Division

Defense and Security Division

Technological Research Division

Electronic and information Leti technologies

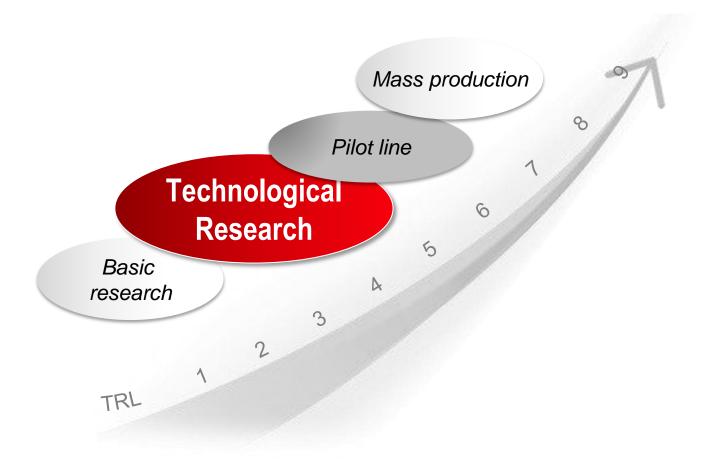
Liten New Energies

Software

Basic Research Division (Life sciences and Physical sciences)

Leti → **Electronics and information technologies Laboratory**

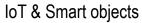
Director: Dr Marie-Noëlle Semeria


- 1,800 collaborators
- 2,800 patents40% under licensing; 311 registered in 2014

- Budget: 318 M€
- 91,500 sq.ft clean rooms
 For 200 and 300 mm wafer fab, operated 24/7

CREATE AND TRANSFER INNOVATION TO OUR INDUSTRIAL PARTNERS

365 ON-GOING INDUSTRIAL CONTRACTS WITH FRENCH AND INTERNATIONAL COMPANIES SUCH AS:



Downloaded from http://meridian.allenpress.com/imaps-conferences/article-pdf/2015/DPC/002095/2262573/2015dpc-tha33.pdf by gues

Consumer

Energy and environment

Biology and health

Highly tunable Mn-doped PZT (PMZT) thin films for integrated RF Devices

- Context and Introduction
- > Experimental Procedure
 - Fabrication of the PMZT-based MIM capacitors
 - On-wafer electrical characterization
- Performances of the PMZT-based MIM capacitors
 - > Leakage currents
 - > Dielectric strengths
 - > RF Tunability
- Conclusion and On-going work

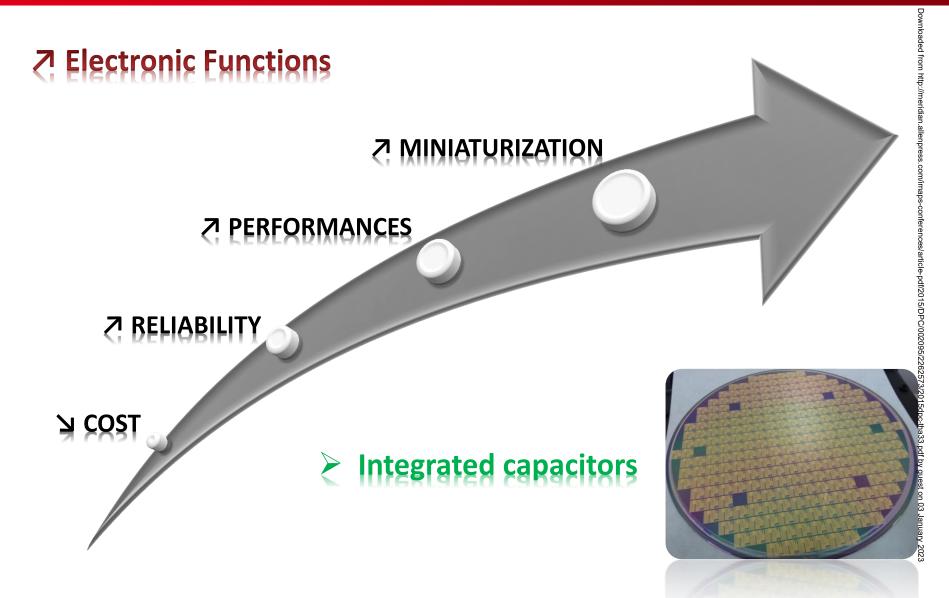
CONTEXT AND INTRODUCTION

CEA LECH INTRODUCTION TO PASSIVE COMPONENTS

System	Total Passives	Total ics	Ratio			
	CELLULAR PHONES					
Erlesson DH338 Digital	359	25	14:1			
Ericsson E237 Analog	243	14	17:1			
Philips PR93 Analog	283	11	25:1			
Nokia 2110 Digital	432	21	20:1			
Motorola Md 1.8 GHz	389	27	14:1			
Casio PH-250	373	29	1301			
Motorola StarTAC	993	45	22:1			
Matsushita NTT DOCOMO 1	492	30	16:1			
COMPUTERS						
Apple Portable Logic Board	184	24	8:1			
Apple G4	457	42	11:1			

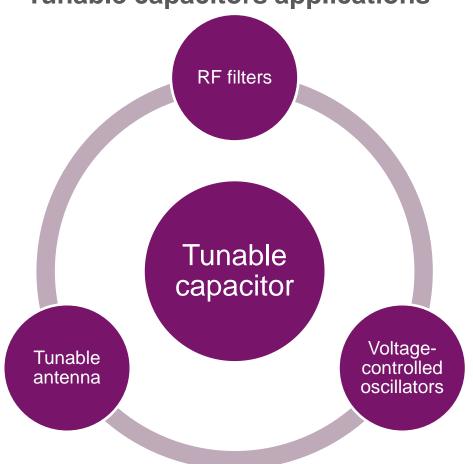

J. Andresakis et al., Ohmega Technologies

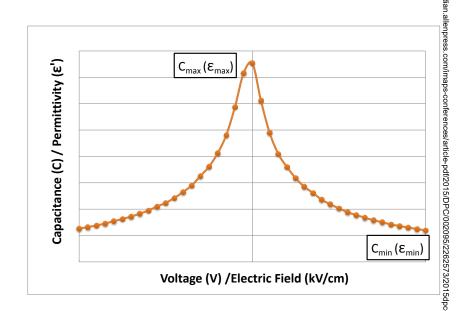
Average ratio PC/IC:20:1


IC = integrated circuit

Capacitors: 75% of the world passive market

World passive market (\$billions) Source : INEMI 2004




Ceatech Introduction to Tunable Capacitors

Tunable capacitors applications

Tunability definition

$$T = \frac{c^{max} - c^{min}}{c^{max}} [\%] @V$$

currents

row leakage

under voltage nuder voltage High truapility

factor

tactor

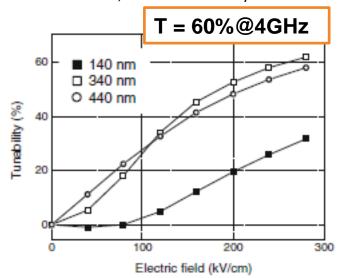
High dnalith

Low-cost

Ferroelectric thin films

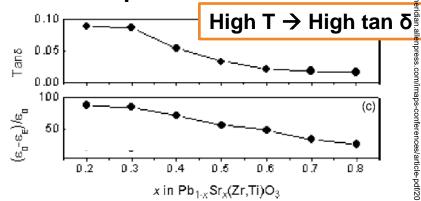
Ceatech

PZTM& DORED PZT DTHING FILMS FOR TUNABLE CAPACITORS

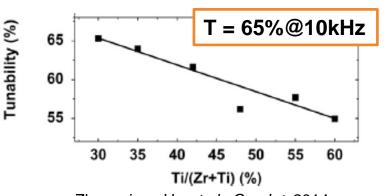


PZT

(Lead Zirconate Titanate)


Source: Rex Garland, Stanford University

D. Min et al., J. Electrocer., 2012.


Doped-PZT

Strontium doped-PZT

Qi-Yue Shao et. al., J. of App. Phys., 2006

Lanthanum doped-PZT

Zhongqiang Hu et al., Cer. Int.,2014

)02095/2262573/2015dpc-tha33.pdf by guest on 03 January 2023

Manganese (Mn) doped-PZT → PMZT

with different amounts of dopants (0% - 3% Mn)

EXPERIMENTAL PROCEDURE

SiO₂

- Si wafer (200 mm)
- Si thermal oxidation → SiO₂

Pt/TiO_x
SiO₂
Si

Ti deposition by PVD (10nm)

- Ti thermal oxidation → TiO₂
- PVD deposition of Pt (100nm)
 - → Bottom Electrode

PZT or PMZT

Pt/Tio_x

SiO₂

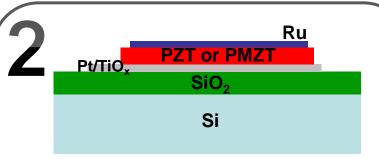
Si

- Spin-coating deposition of 1 P(M)ZT layer
 - Drying: air/130°C/5min (hot plate)
 - Pyrolysis: air/350°C/5min (hot plate)
 - Crystallization: 0₂/700°C/1min (RTA)

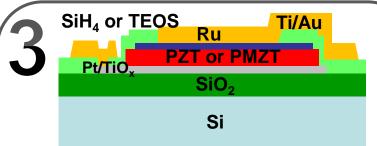
PZT or PMZT

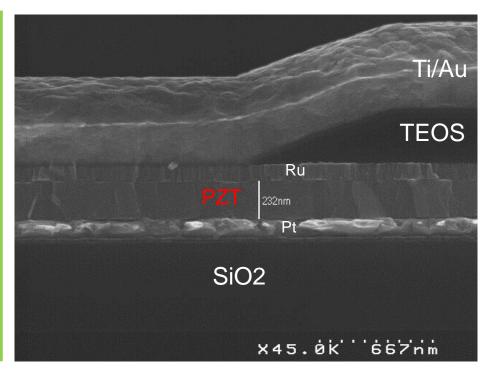
Pt/TiO_x

SiO₂


Si

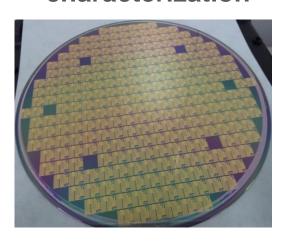
- Spin-coating deposition of 3 P(M)ZT layers
 - Drying: air/130°C/5min (hot plate)
 - Pyrolysis: air/350°C/5min (hot plate)
 - Crystallization: 0₂/700°C/1min (RTA)


CEA Lech MIM CAPACITORS FABRICATION PROCESS



- Ru etching (1st photolithography level)
- PZT etching (2nd photolithography level)
- Pt etching (3rd photolithography level)

- Passivation: PECVD deposition of TEOS
- TEOS etching (4th photolithography level)
- Deposition and etching of Au/Ti contacts (5th photolithography level)


- Thin film deposition:
 Ellipsometry measurements
 (49 points):
 - P(M)ZT thickness ~ 225 nm
 - Thickness uniformity ± 3 %
 - Roughness ~ 1.5 nm
- 5th photolithography level: Cross-sectional Scanning Electron Microscopy (SEM)

Good wafer-to-wafer uniformity → Reproducible process

Wafer-level electrical characterization

- Leakage currents
- Breakdown voltages (dielectric strengths)
- RF Tunability

Wafer-level characterization facilities at CEA LETI

Cascade PAV

Cascade S300

Karl Zuss PA300

ATMOSPHERE(S)

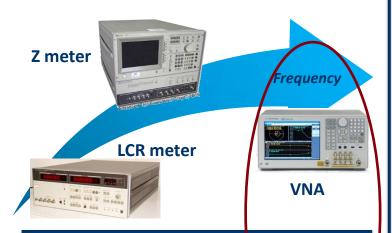
AIR

NITROGEN

VACUUM

PROBERS

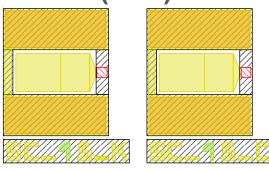
3/2015dpc-tha33.pdf by guest or


Methods	Current vs time, I(t), under an applied electric field	Linear Ramp Voltage Stress measurements (LRVS)		
Measurements	Leakage currents	Breakdown voltages		
Instruments	Keithley 2410	Keithley 2410		
Conditions	10 points, Time: 180s, Applied voltages: ± 5, 10, 20, 30, 40V _{DC}	90 points, Voltage ramp: 1V/s, Threshold current: 1µA		
Typical results	1.4E-9 1.2E-9 1.0E-9 2.0E-10 0.0E+0 0 50 100 150 200 Time (s)	1E-6 1E-7 1E-8 1E-9 1E-10 1E-11 1E-12 0 10 20 30 40 50 60 Voltage (V _{DC})		

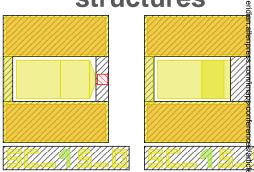
Short

Tunability/C(V) characterization

INSTRUMENTS


PROBES

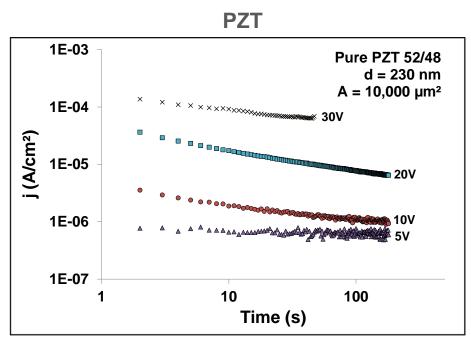
DC probes

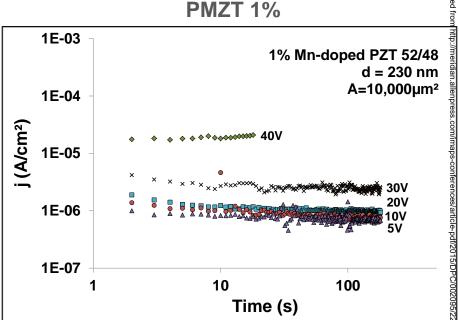

GSG probes

Devices under test (DUT)

Square shaped Disc shaped

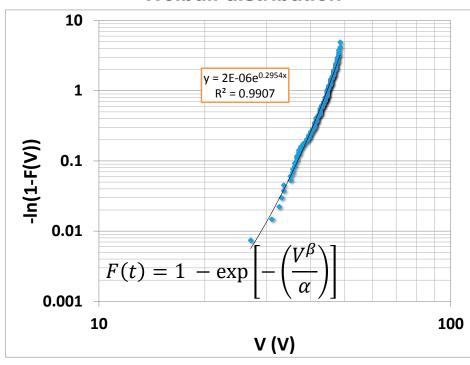
Deembedding structures


Open

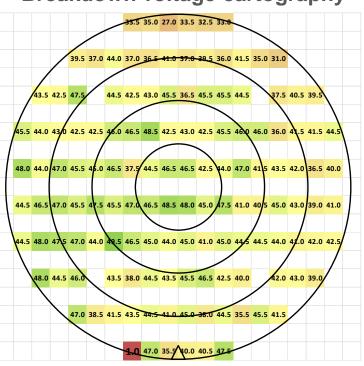

- 1. S₁₁ parameters measurements [100MHz:4GHz] under applied voltage [0V:+20V]
- Impedance calculation
- Deembedding
- Capacitance vs voltage/Tunability extraction

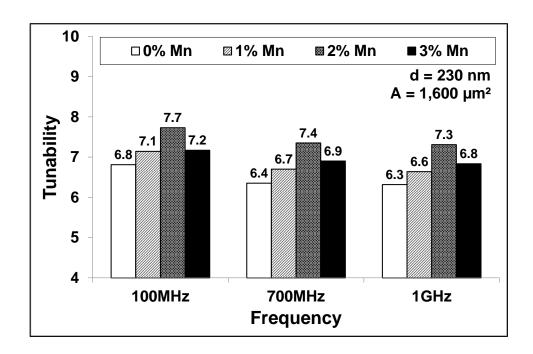
$$T = \frac{C_{eff}^{0V} - C_{eff}^{20V}}{C_{eff}^{0V}}$$
 [%] or $T = \frac{C_{eff}^{0V}}{C_{eff}^{20V}}$: 1 [no unit]

RESULTS AND DISCUSSION

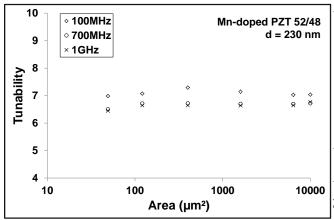

Curie-von Schweider power law:

$$J(t) \propto t^{-n}$$


- → Space-charge relaxation mechanisms or trapping of charge carriers
- → Complementary measurements at various temperature required to determine conduction mechanisms


Breakdown voltage cartography

% Mn	0%	1%	2%	3%
Breakdown voltage (V)	44.5	44.9	56.6	55.4
Dielectric strength (MV/cm)	1.9	2.0	2.5	2.4


Downloaded from http://meridian.allenpress.com/imaps-conferences/article-pdf/2015/DPC/002085/2262573/2015dpc-tha33.pdf by guest on 03 January 2023

- No specific law for the tunability variation as a function of the doping ratio
- Highest tunability of 7.7:1@100MHz achieved with the PMZT doped with 2% Mn.
- PZT & PMZT tunability is constant regardless of the capacitor area.

- Enhanced tunability of both the PZT and the PMZT thin films were obtained
- Tunability remains constant while the frequency increases from 100MHz to 1GHz.

tan δ <0.1 ~ to the state
 of the art for PZT-derived
 materials

Dielectric tunability of various material

MATERIAL	T (%)	FREQUENCY	VOLTAGE (V)	REF.
BST	71.0	500MHz	9	A. Tombak <i>et al.</i> , 2002
BST	65.0	1MHz	8	B.H. Park <i>et al.</i> , 2000
BSKT	77.0	100kHz	12	C. Koppole <i>et al.</i> , 2013
PCT	70.0	1kHz	30	M.L. Calzad et al., 2005
PZT	60.0	4GHz	13	D. Min et al., 2012
PZT	69.3	1kHz	18	J. Wu <i>et al</i> ., 2008
PSZT	48.0	1MHz	15	Q.Y. Shao et al., 2006
PLZT	65.0	10kHz	14	Z. Hu et al., 2014
PZT	84.1	1GHz	20	This work
PMZT (2%Mn)	84.9	1GHz	20	This work

One of the highest reported tunability

CEA LECH FACTORS INFLUENCING THE TUNABILITY

Processing and integration factors

Films and material properties

- Deposition technique,
- Curing processes (post-annealing, T°C,...),
- Electrodes & substrate materials.

- Crystal structures
- Porosity
- Impurities
- Dead layer thickness
- Film thickness

Variation with applied voltage of frequency

CONCLUSION & ON-GOING WORK

- PMZT-based MIM capacitors have been manufactured using a low cost process ready for mass production
- Low leakage current density (which decreases by 1 to 2 orders of magnitude by modifying PZT with Mn @30V).
- > High dielectric strengths achieving 2.5MV/cm
- Outstanding tunability as high as 85% (~7.5:1) @1GHz at 870kV/cm
 - → among the highest ones reported in the literature for PZT-derived thin films, but also for other ferroelectric materials (such as BST tunability ~ 5:1)
- Mn-doped PZT thin films are promising candidates for RF tunable capacitors.

On PMZT

- ☐ Microstructural analyses such as XRD analyses to determine the crystal structure
- ☐ Current measurements at various temperature to identify the conduction mechanisms
- ⊔ ...

Characterization of other doped-PZT thin films

32