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Abstract 
Photonic Integrated Circuits (PICs) are advancing high-performance computing, data centers, and sensing, 
yet three-dimensional (3D) PICs introduce critical thermal management challenges due to high-density 
bonding and heterogeneous materials. Traditional methods like thermal microscopes and in-package sensors 
yield sparse data, limiting full thermal profile visibility. This paper presents a dual-method solution 
combining an AI-driven thermal modeling framework with a design-based heuristic approach. The AI 
method integrates sparse sensor data with design layer and density information to predict multilayer 
temperature variations, while the heuristic approach uses localized material properties, design layout, 
component geometries, and sensor coordinates to refine thermal estimations in specific regions. A 2D thermal 
map of a 3D PIC is generated by interpolating sensor data and adjusting for local thermal resistivity using 
comparative analysis between design regions. The heuristic method complements the AI model, improving 
estimation accuracy without extensive training data. Together, these methods offer a scalable, accurate 
solution for real-time thermal mapping and design-time simulation, enabling reliable thermal management 
in next-generation 3D photonic systems.  
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I. Introduction 
Photonic integrated circuits (PICs) pack many optical 

components – lasers, modulators, detectors, waveguides – 
onto a single chip, enabling ultra‑fast, energy‑efficient data 
communication [1,2]. Light carries data with minimal loss, 
revolutionizing long‑haul fiber communications and 
promising to “greatly expand computing power” in data 
centers and AI systems if on‑chip optical interconnects can 
be realized. Silicon photonics, leveraging mature CMOS 
fabrication, already provides modulators, filters, and 
detectors that achieve hundreds of gigabits per second per 
channel at low energy [2]. However, packing photonics and 
electronics side‑by‑side on a flat (2D) chip has limitations. 
For example, co‑integrating electronics and photonics on one 
die “freezes” the electronics at a given technology node and 
limits density. At high integration scale, planar PICs require 
numerous waveguide crossings, which introduce optical loss 
and crosstalk and also exhaust chip area. 

To overcome these limits, three-dimensional (3D) 
heterogeneous integration is emerging as the next frontier. In 

3D PICs, multiple functional layers – electronic circuits, 
optical sources or gain layers, passive waveguide layers, etc. 
– are vertically stacked and coupled [3]. This stacking 
enables much higher device density and new functionality, 
for example, 3D space‑division multiplexing and beam 
steering. Early 3D photonic‑electronic systems have already 
demonstrated interconnect energy below 200 fJ/bit, 
leveraging separate optimized chips bonded together [2]. By 
separating the electronic driver (on an advanced CMOS chip) 
from the photonic layer, designers can use the latest 
transistors while using silicon or III–V materials optimally 
for optics. Such heterogeneous 3D architectures promise 
orders of magnitude more optical channels and modes than 
planar PICs, with tighter integration and co‑packaged optics. 

However, stacking layers with diverse materials and 
devices also creates a critical thermal management 
challenge. Every active photonic and electronic component 
generates heat, and in a dense 3D stack this heat must flow 
through thin layers of silicon, dielectrics and metals. The 
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resulting temperature gradients can shift resonant 
wavelengths, reduce efficiency, and induce thermal crosstalk 
between channels. In what follows, we review the thermal 
challenges of 3D PICs and argue that AI‑driven thermal 
mapping can offer new solutions.  
 

II. Background 

A. Planar PIC limitations and the drive to 3D: 

Conventional silicon PICs are fabricated on 
silicon‑on‑insulator (SOI) wafers, integrating waveguides, 
modulators, and detectors in one plane [4]. As component 
counts grow (for example, phased‑array antennas or optical 
neural processors with tens of devices), planar layouts force 
many waveguide crossings and long interconnects. These 
crossings incur optical loss and limit scalability [1]. 
Moreover, placing electronics alongside photonics on the 
same chip constrains electronic performance to the photonics 
node, and vice versa. This has motivated heterogeneous 
approaches where photonics and electronics are fabricated 
on separate wafers (possibly using different materials) and 
then bonded or assembled. 

In 3D heterogeneous integration (3D‑HI), for example, 
one can bond a thin III–V die (with lasers and 
photodetectors) onto a silicon substrate, and then stack 
silicon nitride (SiN) or lithium niobate layers on top for 
passive routing. A representative layered 3D‑PIC 
architecture might include (from bottom to top): a silicon 
CMOS electronic chip, a wafer‑bonded III–V gain layer, a 
SiN waveguide layer, and a sapphire or silicon substrate. 
Electrical interconnects between layers are provided by 

vertical vias or bonded metal traces, while optical coupling 
can occur via evanescent couplers or specially fabricated 
vertical couplers (e.g. spiral or grating couplers) [5]. This 
vertical stacking unlocks a “new spatial degree of freedom” 
– designers can route signals not just laterally but through the 
depth of the chip. 

 As a result, 3D PICs can pack far more components in the 
same footprint. For example, multilayer PICs have 
demonstrated 3D optical phased arrays and ultradense switch 
fabrics. Hybrid integration also enables mixing material 
systems: silicon offers compact waveguides in the telecom 
band, while wide‑bandgap layers (e.g. silicon nitride, 
aluminum nitride) provide low‑loss routing from visible to 
infrared. Heterogeneous 3D PIC platforms have been 
developed with stacked silicon nitride and aluminum nitride 
waveguides on sapphire, supporting UV–NIR operation. 
Vertical coupling schemes (e.g. self‑rolled micro-ring 
couplers) have been proposed to link dissimilar layers with 
minimal loss and fabrication complexity. These innovations 
demonstrate that 3D photonic integration is essential for 
future high‑performance microsystems, but they also 
highlight the complexity of design and the importance of 
managing non‑electrical constraints (like heat). 

B. Heterogeneous stacking methods: 

Three‑dimensional PICs can be realized by monolithic 
growth (epitaxial deposition of one material on another) or 
by hybrid assembly (bonding prefabricated layers). For 
instance, silicon‑on‑III‑V bonding can integrate a laser gain 
layer, while silicon nitride layers can be stacked using wafer 
bonding or sacrificial layer techniques. Hybrid bonding 
(using oxides or adhesives) is often preferred because it 

Fig. 1: 3D Heterogeneous integration of photonics chip, showing sensors and thermal issues in structures, and thermal 
microscope on top 
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avoids lattice‑mismatch issues. Fabrication flows typically 
involve planarizing layers with SiO₂ cladding and then 
patterning each layer individually. Figure 1 illustrates a 
simplified 3D‑PIC stack on an SOI substrate: an electronic 
driver layer (bottom) is bonded to a silicon waveguide layer 
(middle) and a top photonic device layer, with vertical vias 
and metal interconnects linking them. (In our case study 
below, we consider a similar three‑layer SOI platform with 
laser and modulator heat sources.) This schematic highlights 
how devices in different layers can be co‑placed to achieve 
compact routing. 

C. Thermal considerations: 

Heterogeneous 3D integration brings materials with 
different thermal conductivities and expansion coefficients 
into close proximity. For example, silicon nitride and 
aluminum nitride each have very different thermal 
conductivities (Si₃N₄ ≈ 30 W/m·K vs. AlN ≈ 140 W/m·K) 
and thermo‑optic coefficients (4.7×10⁻⁵/K vs. large 
electro‑optic effect). These differences mean heat generated 
in one layer can spread unevenly through the stack, and local 
hotspots can create large temperature gradients. In typical 
photonic devices, even a few milliwatts of power can shift 
resonant wavelengths by picometers/K, so a 10–20 K rise can 
derail a narrowband filter. Moreover, on‑chip metal 
interconnects (for modulators or electronics) add additional 
Joule heating. Finally, 3D stacking often uses high‑density 
bonding (or eutectic), which can introduce thin layers of 
epoxy or metal with poor thermal conductivity [6], further 
complicating heat flow.  

In summary, modern PICs are moving toward 
high‑density, heterogeneous 3D architectures to meet 
bandwidth and integration demands. This densification leads 
to unprecedented thermal loads and gradients. While 
conventional techniques (planar circuits, IR cameras, sparse 
sensors) suffice for simple PICs, they face serious limitations 
in 3D stacks. In the next section, we discuss why thermal 
mapping and management in 3D‑PICs are uniquely 
challenging and how emerging AI methods can help. 

  

III. Thermal Mapping Analysis Challenges 
3D photonic stacks pose multiple thermal challenges that 

complicate performance and reliability. First, heat sources 
are distributed in three dimensions. Lasers, modulators, and 
electronic drivers (often implemented with microheaters) 
dissipate power in interior layers that are insulated by 
low‑conductivity cladding and bonding. As an example, a 
thin SiN waveguide layer buried under oxide may host 
integrated heaters or amplifiers; the heat must pass through 
oxide and silicon before reaching the chip surface. Second, 
different materials conduct and store heat differently. A 
hotspot in a high‑conductivity layer (e.g. silicon substrate) 
will spread heat widely, whereas in a low‑κ layer (e.g. 

polymer or adhesive) it remains localized. Third, thermal 
crosstalk becomes severe: heat from one component can 
influence neighbors both laterally and vertically. 
Experimental studies have shown that even millimeter‑scale 
separations are insufficient to isolate thermal effects in dense 
PICs. In one analysis of a two‑layer silicon PIC with 
microring heaters, heating on one ring measurably shifted 
resonance in nearby rings several µm away, and the authors 
concluded that “in large thermally actuated photonic circuits, 
the thermal cross-talk is an issue”. In 3D stacks, cross‑layer 
crosstalk further entangles the temperature field: a heater in 
the top layer will raise temperature in the middle and bottom 
layers, perturbing devices there.  

Accurate thermal mapping (i.e., knowing the 3D 
temperature distribution) is thus critical, but traditional tools 
fall short in 3D-PICs: 
 Infrared (IR) microscopy: IR cameras can image surface 

temperatures by detecting thermal radiation, but the 
spatial resolution is limited (typically a few micrometers 
at best) and the method only sees the top surface [7]. In 
practice, buried heaters and waveguides have no direct 
IR signature. Moreover, emissivity variations (e.g. 
metals, dielectrics) make calibration difficult. As in 
medical thermography, “2D IR images reflect only the 
surface temperature distribution, hence only rough 
localization of the heat source is possible”. For a 3D 
PIC, this means IR can miss or blur hotspots entirely. 

 Sparse on-chip sensors: Designers sometimes 
incorporate discrete temperature sensors (e.g. diode or 
resistance thermometers) at a few points. But these 
provide only point readings; reconstructing a full map 
from a handful of probes is an underdetermined 
problem. Placing too many sensors is impractical (they 
consume area, power, and complicate the design). 
Moreover, any embedded sensor perturbs the local heat 
flow. Thus, in‑package or on-chip measurements 
typically yield very sparse data (often just average 
junction temperatures), which is insufficient to capture 
fine gradients in a multi-layer stack. 

 Conventional simulation tools: Detailed finite-element 
or finite-volume simulation of heat conduction can 
predict the temperature field, but full 3D thermal 

Fig. 2: Cross-section of heterogeneous integration stack 
of multilayer materials of 3D photonics chip 
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simulation is computationally expensive, especially if 
materials and sources are updated frequently (e.g., 
during circuit design optimization). Simulating the 
non‑steady‑state thermal response (transient cooling or 
heating) adds further complexity. In a design loop, it is 
often infeasible to run a full simulation at each iteration. 
  

IV. Case Studies for Data Collection 

A. Design Description 

The hybrid 3D ring-based PIC under study features a 
vertically stacked architecture (in Figure 2) where a silicon 
photonic layer with modulator and waveguides forms the 
base, with additional bonded layers above. For example, the 
bottom Si waveguide layer (with Si core waveguides clad in 
SiO₂), while a second layer of Si₃N₄ or III–V material is 
bonded on top to implement lasers or amplifiers. Between 
layers, low-k dielectrics (e.g., SiO₂ or BCB) and oxide 
claddings separate the materials. Temperature sensors (e.g. 
embedded resistive or diode thermometers) are distributed at 
key locations, such as on the surface of each layer near active 
devices. 

Silicon photonic layer: High-index Si waveguides (silicon 
k≈150 W/m·K) serve as the core devices. These are patterned 
on a silicon-on-insulator (SOI) substrate with a buried oxide 
(SiO₂, k≈1.4 W/m·K) [8]. 

Bonded layer: On top of the Si layer lies a bonded layer of 
either silicon nitride (Si₃N₄, k≈20–30 W/m·K) for passive 
routing or a III–V epitaxial film (e.g. InP, k≈68 W/m·K) for 
lasers/amplifiers. Active devices on this layer typically 
require a thick dielectric (e.g. 2–10 µm BCB) for 
planarization, which significantly increases thermal 
resistance. For instance, flip-chip InP DFB lasers on Si with 
a 2 µm BCB layer exhibit thermal resistances on the order of 
100–200 K/W. 

Dielectrics and metals: Inter-layer dielectrics (SiO₂) have 
low thermal conductivity, creating vertical thermal 
resistance. Metal layers (heater wires, interconnects) are 
highly conductive (e.g. W ≈170 W/m·K, Al ≈237, Au 
≈314 W/m·K) and dominate lateral heat spreading. Prior 
work shows that the total heater area and metal properties are 
the main determinants of thermal behavior [9]. 

Sensors: A sparse set of thermal sensors is placed on-chip 
to monitor temperatures. Because of area constraints, 
typically only a handful of sensors can be deployed. These 
might be thin-film resistance thermometers or diode-based 
sensors patterned near the heated up areas, providing 
localized temperature readings. 

Key thermal properties of the materials are summarized 
above: silicon’s high k allows efficient in-plane conduction, 
whereas SiO₂ cladding and thick bonding oxides act as 
insulators. The heterogeneous stack, therefore, creates a 
complex thermal landscape. In particular, silicon nitride and 

III–V layers have much lower k than Si, and each material 
interface adds thermal boundary resistance. The thick oxide 
cladding common in Si-photonics further hinders vertical 
heat flow. These diverse materials (Si, SiO₂, Si₃N₄, III–V, 
metals) with mismatched conductivities and expansion 
coefficients make accurate thermal modeling critical. 

B. Experimental requirements 

A feasible proof-of-concept experiment would proceed as 
follows: 

Prototype 3D PIC test chip: A small 3D photonic chip 
containing several waveguides on the Si layer needs to be 
fabricated and, if possible, a bonded layer (e.g. InP or SiN) 
on top. Integrate thin-film heater traces (W or Al) on each for 
thermal tuning, and co-fabricate a limited number of 
temperature sensors (e.g. metal resistance thermometers) at 
strategic locations. 

Sensor readout and calibration: Each on-chip sensor to an 
external readout (microcontroller or DAQ) to be connected, 
and can be calibrated them using a known temperature 
reference. Optionally, a calibrated IR microscope to measure 
surface temperatures can be employed (although the thick 
oxide may limit IR penetration). 

Controlled heating experiments: Sequentially activate 
ring heaters with known currents. For example, apply step 
currents (e.g. 0–20 mA) to one heater at a time, 
corresponding to ~0–30 mW dissipation. Record the 
resulting temperature at each sensor over time to capture 
both steady-state and transient responses. Repeat for 
different heaters, combinations of heaters, and various power 
levels.  

Fig. 3: AI-based thermal estimation framework for 3D 
photonic integrated circuits (PICs).  
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Data sparsity: During measurements, use only the on-chip 
sensors (3–5 points) to simulate sparse data. For each heating 
condition, collect the sparse sensor outputs together with a 
reference temperature map (from the IR image or the known 
test pattern).  
 

V. Thermal Profiling Analysis 

A. AI-based Framework 

The proposed AI framework estimates the complete three-
dimensional (3D) thermal distribution within a multilayer 
photonic integrated circuit (3D PIC) by utilizing sparse 
thermal measurements alongside comprehensive design 
metadata. It initiates with two main inputs: (1) design 
details—comprising material stack, geometric configuration, 
interconnect density, and identified heat sources—and (2) 
sparse thermal data gathered from simulations (for instance, 
silicon waveguides on SOI) or embedded sensors. The 
design inputs undergo processing through a feature 
extraction module that encodes thermally relevant 
characteristics such as material boundaries, conductivity 
contrasts, and spatial distributions of heat sources. 
Concurrently, the sparse temperature measurements are 
synchronized with the design layout through a sensor fusion 
module, ensuring spatial coherence and facilitating partial 
supervision. 
These processed data streams are then directed into the AI 
training module, where a Physics-Informed Neural Network 
(PINN) is trained. In contrast to black-box models, the PINN 
incorporates the physical heat conduction equation ∇·(k∇T) 
= Q directly into its loss function, thereby enforcing 
thermodynamic consistency during the learning process. The 
training process utilizes both sparse empirical data and 
established physics principles, with the option to integrate 
hybrid-fidelity data sources—such as coarse analytical 
solutions and detailed finite-element (FEM) simulations. 
Once the model is trained, it produces a high-resolution 3D 
temperature field, even in areas lacking measurements. The 
inferred results undergo validation against a simplified 
experimental setup, like a silicon waveguide on SOI, to 
showcase accuracy and practicality. This data-efficient, 
design-sensitive, and physically grounded framework 
facilitates scalable thermal analysis of next-generation 3D 
PICs without the need for exhaustive simulation or extensive 
sensor coverage. 

B.  Heuristic design-based Analysis 

Design-based thermal analysis is proposed due to the 
significance of design information in understanding and 
addressing heat dissipation, thermal resistivity, and local 
hotspot formation in complex systems. The heuristic design-
based approach generates a 2D thermal profile of a 3D PIC 
by considering localized design details, such as the specific 
materials used in a given cross-sectional area and the precise 

thermal data captured by integrated sensors. This method 
provides a granular estimation of temperature variations with 
focus on localized design information, examining small areas 
within the cross-section (e.g., between coordinates (x1, y1) 
and (x2, y2) shown in Figure 4) and considering the materials 
used in those specific regions. This localized approach 
allows for more accurate thermal data estimation in these 
areas by referencing nearby locations. 

The proposed approach, as shown in Figure 5, utilizes sensor 
thermal data, the sensor’s coordinates within the 3D space of 
the package, and detailed, coordinated layout and design 
information. When available, thermal microscope data 
enhances accuracy by providing additional known thermal 
points on the surface. As illustrated in Figure 4, the input 
sensor thermal and spatial data are used to create a grid 
representing the desired 2D thermal profile, specifying 
known thermal data points. A heuristic estimation is then 
performed for grid cells with unknown thermal data. The 
simplest form of this estimation is linear interpolation, which 
assumes a linear distribution of temperature data across the 
grid cells. To refine these estimations, localized design 
details within each grid cell are factored in. By conducting a 
comparative analysis of thermal conductivities and 
resistances with neighboring cells, the method adjusts the 
initial linear interpolation results. This adjustment process 
ensures that the thermal estimations account for the material-
specific properties and spatial variations, thereby improving 
the overall accuracy of the thermal profile. 

The AI-based and heuristic design-based thermal analysis 
methods, while both relying on design specifications and 
sensor data, differ in their scope and approach. The AI-based 
method processes holistic design information through feature 
extraction and a PINN to model broad thermal behavior, but 

Figure 4: Illustration of thermal map grid processed from 3D 
PIC design 

Figure 5: Workflow of heuristic design-based approach 
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it requires an initial training dataset, which can be 
challenging to obtain. Conversely, the heuristic design-based 
approach focuses on localized circuit areas, using detailed 
design data to estimate thermal properties with greater 
precision and operating independently with minimal or no 
prior data. Despite these differences, the heuristic method 
can complement the AI-based framework, validating and 
refining its outputs to ensure estimates remain within 
acceptable ranges when direct validation is unavailable. This 
synergy between the two methods enhances the overall 
accuracy and reliability of thermal analyses in complex 
systems. 

VI. Conclusion 
This work addresses the critical thermal challenges in 3D 
PICs by introducing a hybrid solution that combines AI-
driven modeling with a heuristic design-based approach. The 
AI framework utilizes sparse sensor and design data to 
predict complex thermal behavior across multilayer 
architectures, while the heuristic method leverages localized 
material properties and spatial layout to enhance estimation 
accuracy in specific regions. By integrating these 
complementary approaches, we establish a robust strategy 
for both design-base simulation and real-time thermal 
monitoring. The design-based method offers independence 
from large training datasets and enables precise thermal 
interpolation where direct measurements are sparse. 
Together, these methods provide a scalable and adaptable 
solution for comprehensive thermal analysis, supporting the 
development of thermally reliable and efficient 3D-PICs. 
Future work will explore tighter coupling between AI and 
heuristic models to further improve prediction robustness 
and adaptability across diverse packaging configurations.  
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