## Flip Chip and Wafer Level Packaging Past, Present and Future

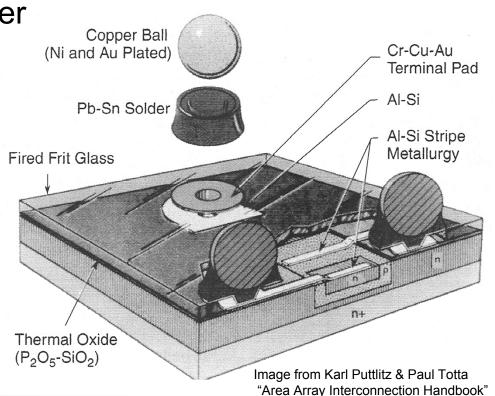
IMAPS Device Packaging Conference 2011

March, 2011

#### **Presentation Goals**

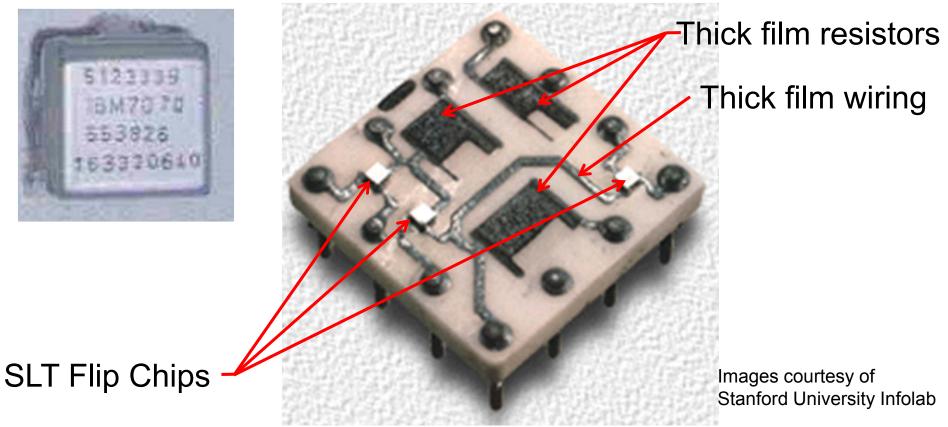
# Understand the history of flip chip and Wafer Level Packaging

#### **Presentation Goals**


## Apply this learning to TSV and other new packaging technologies

#### E&G's Rule of Technology Change

## No One Uses a New Technology Unless They Have To


#### IBM Solid Logic Transistor (SLT)

- IBM SLT was the first flip chip device using bumps
  - Introduced in 1964 in the IBM 360 Model 40 computer
  - Glass passivation to eliminate need for hermetic package
  - Evaporated 90PbSn solder
  - Three Cu balls
    - To control standoff
    - 350µm pitch
  - Abrasively diced

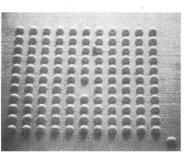


#### SLT Module (likely a flip-flop)

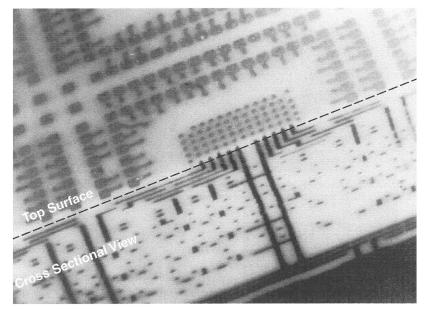
#### Ceramic PGA with AI cap and potted bottom side seal



#### Why did IBM use FC for SLT?


- Many discrete transistors needed to make computer
  - ICs were not considered to be viable yet
  - Needed a low cost & reliable method to make computers
- Wire bonding was a manual process
  - No vision systems (human eye thru microscope)
  - No servo systems (positioning by human hand)
  - No auto looping (operator controlled)
- Wire bonds were not reliable enough
  - Thermocompression only
  - Purple plague, variable bond strengths

#### Flip Chip in the 1970s


- Delco began using flip chips for automotive
- IBM launches MST (Monolithic System Technology) 1970
  - First flip chip IC, 3-4 circuits with 12 bumps on 300µm pitch
  - C4 (Controlled Collapse Chip Connection) solder bump
- Bump layout
  - Peripheral → Staggered Peripheral → Full Array
- Substrate technology to provide adequate wiring
  - Thin film on ceramic
  - Multi-layer thin film on ceramic
  - MLC (Multi-layer Ceramic) 1979
    - Required to escape full array bump layouts

#### Flip Chip in the 1980s

- IBM used Bipolar Logic
  - Significantly faster than CMOS
  - Increasing requirement to interconnect multiple chips



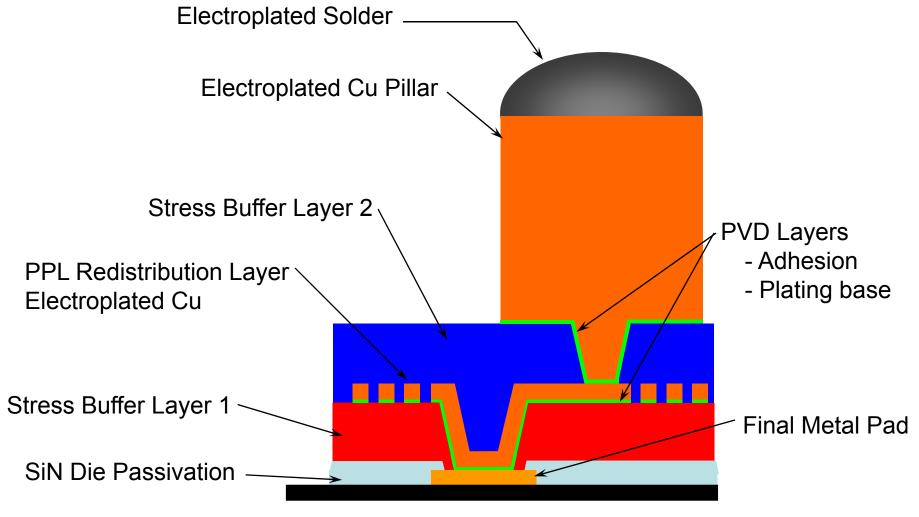
- Development of IBM's MLC MCMs (Multi-chip Modules)
  - 9 chips → 36 chips → 121 chip TCMs (Thermal Conduction Modules)
  - 8 layers to 85 layers of MLC wiring
  - Glass ceramic MLC with TF layers
- $250\mu m \rightarrow 225\mu m$  pitch
  - 121 bumps  $\rightarrow$  800+ bumps
- Hitachi electroplating
  - Paper published in 1981
  - Ti Cu Ni stack
  - Same basic structure as today



Images from Karl Puttlitz & Paul Totta "Area Array Interconnection Handbook"

#### Key FC Enabling Technologies

- Underfill developed in 1984 by Hitachi
  - For flip chip on ceramic reliability improvement
- SLC (Surface Laminar Circuit) by Tsukada-san of IBM Japan
  - First high-volume build-up layer technology on organic
  - Development began in 1987, first products shipped in 1990
- Tsukada-san combines SLC and underfill
  - Initially for DCA then for FCIP
  - Development began in 1989, first DCA products shipped in 1992
- Commercial flip chip placement machines developed
  - Zevatech Micron 2 in ~1993
  - Universal GSM in ~1995


#### Flip Chip in the 1990s

- IBM switches from Bipolar to CMOS logic in 1992
  - Bipolar required ten TCMs to make a processor
  - CMOS enabled four processors on one TCM
- Flip chip expands beyond mainframes
- Viable bumping subcon infrastructure develops
  - Flip Chip Technologies formed in February 1996
    - Licenses ASE, SPIL, Amkor, National, and STATS from 1999-2002
  - Unitive spun out of MCNC in July 1996
- Intel microprocessor conversion in 1999
  - OLGA (Organic Land Grid Array) package
- Development of viable 63SnPb bumped flip chips

#### Why the Conversion to Flip Chips

- Power & Ground Distribution
  - Primary driver for conversion in 1990s
  - Needed a low inductance delivery of 50-100+ amps to minimize SSN (Simultaneous Switching Noise)
  - Need to deliver correct voltage to center of ever larger chip sizes
  - Intel's current use of thick PPL (Post Passivation Layer) Cu
- I/O Count
  - ASICs and μPs were becoming I/O constrained
- High Speed serial I/O became a driver in early 2000s
  - Signal integrity due to very fast edge rates
  - DDR4 DRAM is next major conversion

#### Copper Pillar Bump on PPL RDL

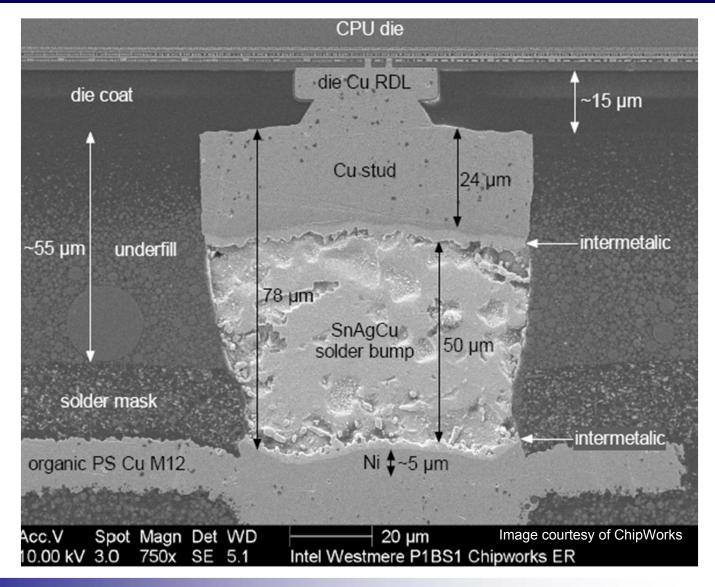


Representative of Intel's 32nm structure

E&G

**IMAPS Device Packaging Conference 2011** 

13


Isolated PPL Cu for I/O bumps

PPL RDL for power, ground, and clock - Many vias to FM

Image courtesy of ChipWorks



#### Westmere 32nm CPU CPB Joint Structure





#### WLP Technology

#### 1995 – 1996 Genesis of the FCT's WLP

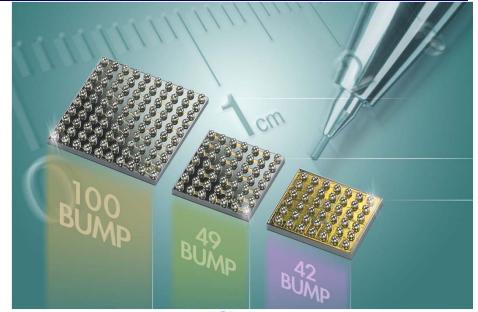
- Flip Chip Technologies (now Flip Chip International)
  - 1995 business plan had 1.5 FCOB (Flip Chip on Board) devices per cell phone
- By 4Q 1996 it was clear that Nokia, Motorola & Ericsson were not going to underfill FCOB devices
- Remember in 1996:
  - Underfilling was slow and had long cure times
  - There was no underfilling of CSPs (Chip Scale Package)
  - The most significant CSP in the market was Tessera's MicroBGA

#### Invention of Modern WLP

- Original WLP concept was Mini BGA (mBGA) developed by Rajan Chanchani at Sandia National Labs in 1994
  - Used RDL (Redistribution Layer) & plated solder bumps
    - Resulted in large diameter bumps of low height
    - Required use of underfill for adequate reliability
- UltraCSP™ development goals
  - RDL to redistribute peripheral wire bond pads to area array
  - Large solder balls, discretely placed to increase stand-off
    - Improves thermal cycle reliability
  - Compatible with SMT (Surface Mount Technology) infrastructure
- UltraCSP was the first modern or viable WLP

UltraCSP is a trademark of Flip Chip International




000423

#### Market Focus on Cell Phones

- FCT worked closely with our customer's customers
  - Development programs with Nokia and Ericsson
    - Developed a good understanding of needs & requirements
    - Created the demand for WLP technology
  - Made *Ultra*CSP a de facto standard
    - Led to licensing of the technology to assure multiple sources
- Early *Ultra*CSP customers
  - Bourns with IPDs (Integrated Passive Devices)
  - Atmel with Serial EEPROMs
  - National Semiconductor with variety of analog parts
- By 2000 some cell phones had ten *Ultra*CSP packages

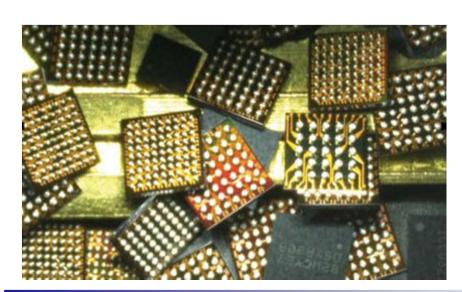
#### WLPs at National Semiconductor

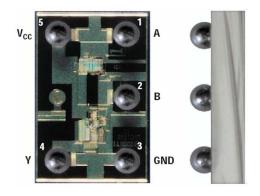
- National's microSMD WLP
  - Introduced in 1998
  - In 2003 47 p/ns
  - Initially 4, 5 and 8 bumps
- In 2010
  - 630 p/ns as of June 2010
  - Wide variety of products
  - Micro SMDxt introduced in 2008
    - Available in up to 10 x 10 array
      - Largest product is 7 x 7
    - Introduced polymer core balls



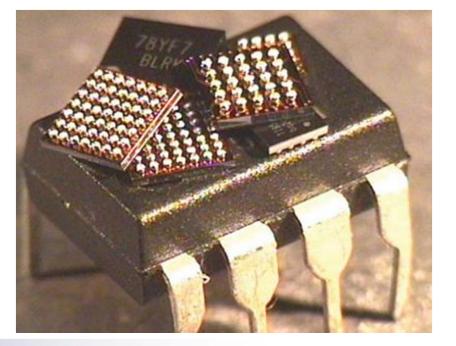





Source: National Semiconductor


www.national.com/packaging/parts/MICROSMD.html www.national.com/packaging/parts/MICROSMDXT.html




#### WLPs at Texas Instruments

- NanoStar "Little Logic" family
  - Introduced in 2000 for standard logic gates
  - By 2003 >60 p/ns
  - Offered in 5, 6 and 8 bump packages
- In 2010
  - Largest array is 13 x 14 (depopulated)
  - Over 170 p/ns offered





Source: Texas Instruments



#### Recently Developed WLP Technologies

- FOWLP (Fan Out WLP)
  - Eliminates the constraint on need to fan-in all I/O
  - Infineon's eWLB (enhanced Wafer Level BGA)
  - Imbera's IMB (Integrated Module Board)
- Image Sensors
  - TSV based packages (i.e., Tessera, STMicro, Toshiba, & XinTec)
  - Glass based WLPs from OptoPAC
- WLP for MEMS

# What Forces a Change in Technology?

# A Requirement That Can Not be Solved with the Current Technology

#### Reality of Technology Adoption

- Current technology suppliers will resist change
  - Nature of human beings
  - Current job, role, fiefdom is at risk
  - Risk of current infrastructure obsolescence
- Current technology will be extended
  - Wire bonding improvements 1960's to present
  - Development of wire bonded stacked die
  - Fine pitch flip chip interconnects, Cu pillar bumps
- Change agent needed (i.e. product manager)
  - Career risk if new technology fails
  - Major career reward if successful



#### E&G's Rule of Technology Change

## No One Uses a New Technology Unless They Have To

#### **Technology Change Drivers**

- Flip Chip Adoption Power & ground distribution
- WLP Adoption Smaller & thinner mobile products
- TSV Adoption
  - Valid reason to adopt are memory I/O improvements
    - Wider buses
    - Lower power
    - Faster data transfer
  - Maybe in the future
    - Allowing mixed process technologies
    - Improving yield (i.e. cheaper)
    - Form factor

#### Conclusions

- Strong driver required for any new technology adoption
- Infrastructure takes time to develop
  - Materials
  - Tool and process development
  - Design tools
  - Qualification
    - Core technology qualifications
    - Internal product qualifications
    - Customer
  - Production capacity
- Incumbent technologies will always improve